

 $\textcircled{\sc c}$ 2004 - 2014 Society For Science and Nature (SFSN). All rights reserved

www.scienceandnature.org

TREE BARKS AS A SOURCE OF NATURAL DYES FROM THE FORESTS OF MADHYA PRADESH

Ravi Upadhyay & Mahendra Singh Choudhary Department of Botany, Government P. G. College, Pipariya district Hoshangabad, M. P.

ABSTRACT

Natural Dyes are the coloring substance obtained from plant, animal or mineral resources. Majority of natural dyes have come from the plants. The present paper reports natural dyes obtained from various tree barks, which were fixed on cotton cloth after treating with mordents. The barks of 24 species of trees belonging to 20 genera and 17 families were found to be source of natural dyes from the forests of Madhya Pradesh.

KEY WORDS: Dyes, Plants, Mordents, Madhya Pradesh.

INTRODUCTION

Color is one of the elements of nature that made the human life more aesthetic and fascinating in the world. Dye is word derived from the English word Daeg or Daeh meaning color. A dye can generally be described as a colored substance that has an affinity to the substrate to which it is being applied. Natural dyes are coloring substances obtained from natural sources like plants, animals and minerals. Trees are also one of the important sources of vegetable dyes, apart from timber. Several commercial natural dyes are obtained from trees, like red dye from Brazil wood (Caesalpinia echinata Lam.), brown dye from Catechu (Acacia catechu L.), yellow dye from Old fustic (Malcura tinctoria (L) Steud.) etc. The art of dveing is as old as human civilization. From the historical records, it is learnt that natural colorants were available to people long back during Chinese and Greco-Roman periods. Dyes in Indian history appear in Vedic period in 'Atharva veda'were we find 'rang'for color and ranjak'for dye. The use of 'Maharanjana', 'Kampilaka', 'Haridra' as dyeing material and 'tuvari' (alum), 'tutta' (copper sulphate) and 'Kasis' (iron sulphate) as mordants (Roy, 1977). The use of natural dyeing materials is evident with the wall paintings of Ajanta, Ellora and Sithannyasal and they still demonstrate the efficacy of dveing craft that had been inherited from ancient times in India. Natural dves have been used since ancient times for coloring and printing fabrics. So it is a fundamental requirement that colored textile should withstand the conditions encountered during processing following coloration and

during their subsequent useful life (Gulrajani *et al.*, 2001). Dye yielding plants are matter of study in the recent past. (Gokhle *et al.*, 2004, Shiva 2007, Garg *et al.*, 2010, Choudhary and Upadhyay 2011, Saravanan *et al.*, 2012, Choudhary *et al.*, 2012). Present work is undertaken to study the dyes yielding plants of Madhya Pradesh. The present paper provides an account some forest trees as a source of dye and the color fixed on cloth after treating with mordents.

MATERIALS & METHODS

Barks from more than 50 species of trees were collected from the forests of Vindhya and Satpura hills of Madhya Pradesh. Some information on traditional methods of dve making was gathered from the local and tribal people. The mordents traditionally used in dyeing fabric were used in the present study. The barks of the trees were collected and dried under shade. These barks were boiled in water along with various mordant like, Alum, Ferrous Sulphate, tin and Copper Sulphate. The mercerized cotton cloth was dipped in boiling dye solution and kept in it for 15 to 20 minutes. The cloth is dried and washed with the detergent to remove the unfixed color. The color fixed on cloth after repeated washing is the fixed dye. The voucher specimens of the trees were collected and deposited in the Herbarium of Botany department of Narmada College, Hoshangabad. The plants were identified using local herbarium of college and flora of Delhi, Maheshwari (1963) and the Flora of Madhya Pradesh, Verma et al. (1993).

OBSERVATION

The color of dye fixed on cloth after repeated washing were observed and shown in table no.1

IABLE I. Dyes fixed on cloth from barks of frees					
S.No	Botanical Name	Vernacular name	Family	Mordents	Color fixed
1	Acacia leucophloea (Roxb.)	Rimjha, Safed Kikar	Mimosaceae	Alum	Brown
2	Acacia nilotica (L.)	Babul, Kikar	Mimosaceae	Alum	Pink
3	Bauhinia purpurea Linn.	Kachnar	Caesalpinaceae	Alum	Red
4	Buchanania lanzan (Roxb.)	Achar, Chironji	Anacardiaceae	Alum	Red
5	Casurina equisetifolia Forst.	Pharas	Casurinaceae	Alum	Light red
6	Chloroxylon swietenia DC	Bhirra, Giriya	Flindersiaceaea	Alum	Yellow
7	Cordia dichotoma forst.	Lasora	Boraginaceae	Alum	Red
8	Diospyros melanoxylon Roxb.	Tendu	Ebenaeceae	Alum	Pink
9	Ficus racemosa Linn.	Gular	Moraceae	Alum	Red
10	Ficus retusa (Linn.)	Fefer	Moraceae	Alum	Light Pink
11	Lannea coromandelica (Houtt.)	Gurjan	Anacardiaceae	Tin	Light Red
12	Mangifera indica L.	Aam	Anacardiaceae	Alum	Light yellow
13	Manilkara hexandra (Roxb.)	Khirni	Sapotaceae	Copper sulphate	Pink
14	Morinda citrifolia L.	Ole	Rubiaceae	Copper sulphate	Red
15	Murraya koenigii (Linn.)	Mitha neem	Rutaceae	Ferrous sulfate	Blue
16	Pithecolobium dulce (Roxb.)	Vilayati imli	Fabaceae	Calcium carbonate	Light Pink
17	Pterocarpus marsupium Roxb.	Beeja	Fabaceae	Alum	Red
18	Randia dumetorum (Roxb.)	Menhar	Rubiaceae	Alum	Pink
19	Syzygium cumini (L.)	Jamun	Myrtaceae	Ferrous sulfate	Brownish pink
20	Syzygium heyneana (Dathie) wall.	Khat-jamun	Myrtaceae	Ferrous sulfate	Dark Blue
21	Terminalia arjuna L	Kahua,	Combretaceae	Alum	Light brown
22	Terminalia bellirica (Gaertn.)	Bahera	Combretaceae	Alum	Brown
23	Ventilago denticulata Willd	Kevti	Rhamnaceae	Alum	Red
24	Wrightia tinctoria (Roxb.)	Dudhi	Apocynaceae	Copper sulphate	Pumice

TABLE 1. Dves fixed on cloth from barks of trees

RESULT & DISCUSSION

Madhya Pradesh is one of the floristically rich regions in Central India and has rich biodiversity. The rich diversity provides raw material for various products including natural dyes. In the present study dyes were obtained from barks of 24 tree species belonging to 20 genera and 17 families. Anacardieaceae, Combretaceae, Fabaceae, Mimosaceae, Moraceae, Myrtaceae, Rubiaceae had 2 species while other families have one species each. Some of the trees are commercially exploited for the dyes like, Wrightia tinctoria, Morinda citrifolia, Bauhinia purpurea, Acacia nilotica and Terminalia bellerica While the rest are not known for dyes. The barks of these trees can be a potential resource for obtaining natural dves. Today people prefer natural dyes over synthetic dyes due to their non toxic properties low pollution and less side effect. A substance, which is resistance to light, water and soap, is a fundamental requirement that colored textile should withstand the conditions encountered during processing following coloration and during their subsequent useful life (Gulrajani et al., 2001). Natural dyes work best with natural fibers such as cotton, linen, wool silk, jute, and sisal (Gulrajani et al., 1992). Development of better technology for extraction of the natural dyes can help in utilization of the natural resource. sustainable Commercialization of dyes can be successful in the region with systematic and scientific approach for identification of resources, extraction, purification, chemical structure elucidation and promotion of use of dyes, thereby enhancing the economy of the local people.

ACKNOWLEDGMENTS

We are grateful to the Head of the botany department, Government Narmada P.G. College Hoshangabad for providing Laboratory facilities. One of the authors is thankful to University Grants Commission for Providing Rajeev Gandhi Fellowship.

REFERENCES

Choudhary, M.S. and Upadhyay, R. (2011) Observation on natural dye yielding plants of Central Narmada Valley India. *Jun. of plant development Sciences*. 3, 127-131.

Choudhary, M.S., Upadhyay, S.T., and Upadhyay, R. (2012) Observation of Natural Dyes in Ficus Species from Hoshangabad District of Madhya Pradesh *Bull. Environ. Pharmacol. Life Sci.*; Volume 1 [10], 34 – 37

Garg, A., Shenda, S. and Gupta, K.C. (2010) Effect of mordants on colour of natural dye extracted from tissue flowers (*Butea mongsperma*). *Akinloye, A.J. et al. EJEAF Che,* 9 (4):772-779.

Gulrajani, M. L. (1992) Introduction to Natural Dyes, Indian Institute of Technology, New Delhi.

Gulrajani, M. L. (2001) Present status of natural dyes. *Indian J. Fibre Text. Res.*, 26, 191–201.

Maheshwari, J. K. (1963) "The flora of Delhi" CSIR New delhi.

Saravanan, P., Chandramohan, G., and Saivaraj, G., (2012) A Study on Eco-Friendly Natural Dye Obtained from Barks of Ficus religiosa. L on Cotton Fabric, *World Journal of Applied Environmental Chemistry* Volume 1, Issue 1: 30-34

Siva, R. (2007) Status of natural dyes and dyes yielding

plants in India. Curr. Sci., 92, 916-925.

Sivakumar, V., Vijaeeswarri, J., Anna J. Lakshmi (2011) Effective natural dye extraction from different plant materials using ultrasound. *Industrial Crops and Products*, 33; 116–122.

Verma, D. M., Balakrishnan, N. P., Dixit, R. D. (1993) Flora of Madhya Pradesh Vol. 1, Botanical Survey of India, department of environment and forest, government of India, Calcutta. pp 69, 50, 72, 74.