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ABSTRACT
Datura stramonium was examined for its antimicrobial activity on some oral pathogens using methanol, chloroform, This
paper is concerned with the problem of finding the minimax and semi-minimax estimators for the parameter of the inverted
exponential distribution under general entropy loss function by applying the theorem of Lehmann. The performance of the
obtained estimators along with the maximum likelihood estimator as a classical estimator have been compared empirically
through simulation experiment with respect to their mean squared errors. Among the set of conclusions that have been
reached, it is observed that, Bayes estimators under general entropy loss function introduce semi-minimax estimators
corresponding to informative priors and introduce minimax estimators corresponding to non-informative priors. The
performance of the minimax and semi-minimax estimators depends on the values of the hyper-parameters and constants
that have had a significant impact on the performance of these estimators.
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INTRODUCTION
The inverted exponential distribution is a member of
continuous probability distributions. It has been introduced
by Keller and Kamath [6] in (1982). The probability
density function and distribution function of inverted
exponential distribution (from now onwards denoted as
IED) are defined as [10]:( ; ) = 1 ⁄ ; > 0 , > 0 (1)( ; ) = ⁄ ; > 0 (2)
The IED has no finite moments where the rth moment of
the IED is given as [9]:

( ) = 1 Γ(1 − ) ; < 1 (3)
Thus the expectation and the variance of the IED do not
exist.

2. Maximum Likelihood Estimation

The maximum likelihood estimation method is one of the
most widely used as classical estimation. Classical view is
that there is some fixed (unknown) value of the parameter
that is driving a process and, hence, its value is reflected in
the data we see [4]. Assume that ( , , … , ) are the n
independent random sample drawn from the IED defined
by (1), then the likelihood function is obtained as:

| = ( , ) = 1 ⁄ ⟹ | = 1 1 ⁄ (4)
Where: = ∑
The maximum likelihood estimator of , denoted by ,
yields by taking the derivative of the natural log-likelihood
function with respect to and setting it equal to zero:= ; = 1 (5)
3. Minimax Estimation
The minimax estimation is an upgraded non-classical
approach in the estimation area of statistical inference,
which was introduced by Wald (1950) from the concept of
game theory. It opens a new dimension in statistical
estimation and enriches the method of point estimations.
According to Wald (1945), “mimimax approach tries to

guard against the worst by requiring that the chosen
decision rule should provide maximum protection against
the highest possible risk”. An estimator having this
property is called a minimax estimator [11]. The
derivation of minimax estimators depends basically on a
theorem due to Hodge and Lehmann (1950) which can be
stated as follows:

Lehmann’s Theorem [8]: Let = { ; ∈ } be a
family of distribution functions and D be a class of
estimators of the parameter . Suppose that ∗ ∈ is a
Bayes estimator against a prior distribution ( ) on the
parameter space Θ. Then Bayes estimator d* is said to be
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minimax estimator if the risk function of d* is independent
on .
Mathematically, this theorem can be proved through
applying two steps: first step is finding Bayes estimator

of θ while the second step is showing that the risk
function of , , , is a constant or not.

In order to obtain Bayes estimation of the parameter , we
consider four priors "inverted gamma and gumbel type II

as an informative prior distributions, Jeffrey and extension
of Jeffrey as a non-informative prior distributions:

 Inverted Gamma Prior: The probability density
function of inverted gamma prior is defined as [1]:( ) = ( ) ⁄ ; > 0 (6)
Where > 0 and > 0 are the shape and scale parameter
respectively of the prior distribution. The posterior density
of ( ) corresponding to the prior ( ) is obtained as:

| = ∏ ( , ) ( )∫ ∏ ( , ) ( ) ⟹ | = ( + )( + ) ( )⁄ (7)
Equation (7) implies that | ∽ Inverted Gamma ( + , + ).
 Gumbel Type II Prior: The probability density function of Gumbel type II prior defined as [1]:( ) = 1 ⁄ ; > 0, > 0 (8)
The posterior density of ( ) corresponding to the prior ( ) is obtained as:| = ∏ ( , ) ( )∫ ∏ ( , ) ( ) ⟹ | = ( + )( + 1) ( )⁄ (9)
Equation (9) implies that | ∽ Inverted Gamma ( + 1 , + ).
 Jeffrey's Prior: Jeffrey's prior is proposed by Harold Jeffrey in (1946). It is based on Fisher information [7], such that:( ) ∝ ( )Where ( ) = − ( , )

is the Fisher's information matrix. For the model (1),( ) = √ ; > 0 , : (10)
The posterior density of ( ) corresponding to the prior ( ) is obtained as:| = ∏ ( , ) ( )∫ ∏ ( , ) ( ) ⟹ | = ( ) ⁄ (11)
Equation (11) implies that | ∽ Inverted Gamma ( , ).
 Extension of Jeffrey's Prior: The extension of Jeffrey's prior is considered as [2]:( ) ∝ [ ( )] ; ∈ Where ( ) is the Fisher's information matrix. For the model (1),( ) = ; > 0 , : (12)
The posterior density of ( ) corresponding to the prior ( ) is obtained as:| = ∏ ( , ) ( )∫ ∏ ( , ) ( ) ⟹ | = ( + 2 − 1) ⁄ (13)
Equation (13) implies that | ∽ Inverted Gamma ( + 2 − 1, ).
Let consider the  general entropy  loss  function  which  was  proposed by Calabria and Pulcini [3] as:, = − ln − 1 ; > 0, ≠ 0 (14)
Whose minimum occurs at = where is an
estimate of under general entropy loss function. Without
loss of generality, we assume q=1. This loss is a
generalization of the entropy loss used by several authors,
where  the  value  of  the  shape  parameter c was  taken
as 1 [5].  When > 0 then over estimation (positive error)
causes more serious consequences than under estimation
(negative error) and converse for < 0. Bayes estimator
of under general entropy loss function is obtained as:= | ⁄ (15)
Now, under general entropy loss function we obtain
Bayesian estimators of the parameter corresponding to
four posterior distributions as:

= ( + )( + + ) ( + ) (16)
= ( + 1)( + + 1) ( + ) (17)
= ( )( + ) (18)
= ( + 2 − 1)( + 2 + − 1) (19)
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The risk function , under general entropy loss function, (14) is:, = , = − ln − 1⟹ , = 1 − + ln − 1 (20)
 For (16) the risk function (20) will be:, = ( )( ) ⁄ ( + ) − ln ( )( ) ⁄ ( + ) + ln − 1⟹ , = ( )( ) ( + ) − ln ( )( )− (ln( + )) + ln − 1 (21)
Now, we have to find ( + ) and (ln( + )) .( + ) = ( + ) ( ) = ( + ) ( ) ⁄ℎ ∶ ( + ) = ∑ , therefore, ( + ) = ∑⇒ ( + ) = ( ) ⁄
⟹ ( + ) = ( + )( ) (22)(ln( + )) = ln( + ) ( ) = ln( + ) ( ) ⁄ℎ ∶ ln(1 + ) = ∑ (−1) , therefore, ln( + ) = ln( ) + ∑ (−1)
Then, (ln( + )) = ln( ) + ∑ (−1) ( ) ∫ ⁄
⟹ (ln( + )) = ln( ) + (−1) ( + )( ) (23)
Substituting (22) and (23) in (21) we get:, = 1 ( + )( + + ) ( + )( ) −ln ( )( )− ln + ∑ (−1) ( )( ) − 1 (24)
From (24), it's clear that , is not constant.  So, is not minimax estimator
Now, return to (21) and let → , we get:, = ( )( ) ( ) − ln ( )( ) − (ln ( )) + ln( ) − 1 (25)
Now, we have to find ( ) and (ln( ))…( ) = ( ) = ( )⟹ ( ) = ( + )( ) (26)(ln( )) = ln( ) ( ) ⁄ = ln( ) ( ) ⁄⇒ (ln( )) = ln( ) − ( ) (27)
Where: ( ) = ( )( ) is a digamma function.

By Substituting (26) and (27) in (25) and simplification, we get:, = ( + ) ( + )( ) ( + + ) − ln ( + )( + + ) − (n) − 1 (28)
From (28), it’s clear that , becomes constant. Therefore, is semi-minimax estimator when ⟶0 .
 For (17) the risk function (20) will be:, = 1 ( + 1)( + + 1) ⁄ ( + ) − ln ( + 1)( + + 1) ⁄ ( + ) + ln − 1
⟹ , = ( )( ) ( + ) − ln ( )( )− (ln( + )) + ln − 1 (29)
Depending on replacement by in the equations (22) and (23), we get:
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( + ) = ( + )( ) (30)(ln( + )) = ln( ) + (−1) ( + )( ) (31)
By substituting (30) and (31) in (29) and simplification, we get:, = 1 ( + 1)( + + 1) ( + )( ) − ln ( + 1)( + + 1) −ln + ∑ (−1) ( )( ) − 1 (32)
From (32), it's clear that , is not constant. Therefore, is not minimax estimator.
Now, return to (29) and assume ⟶ we get:, = ( )( ) ( ) − ln ( )( ) − c (ln( )) + ln( ) − 1 (33)
By substituting (26) and (27) in (33) and simplification, we get:, = + − ln ( + 1)( + + 1) − ( ) − 1 (34)

From (34), it’s clear that , becomes constant. Therefore, is semi-minimax estimator when ⟶0 .
 For (18) the risk function (20) will be:, = ( )( ) ( ) − ln ( )( )− (ln( )) + ln − 1 (35)
Substituting (26) and (27) in (35), we get:, = ( )( ) ( )( ) − ln ( )( )− ( ) − ln + ln −1, = ln ( + )( ) − ( ) (36)
From (36), it's clear that , is constant. Therefore, is minimax estimator.
 For (19) the risk function (20) will be:, = 1 ( + 2 − 1)( + 2 + − 1) ⁄ − ln ( + 2 − 1)( + 2 + − 1) ⁄ + ln − 1
By simplification,, = ( )( ) ( ) − ln ( )( )− (ln( )) + ln − 1 (37)
By substituting (26) and (27) in (37), we get:, = ( ) ( )( ) ( )− ln ( )( )− ( ) − 1 (38)
From (38), it's clear that , is constant. Therefore, is minimax estimator.

4. SIMULATION EXPERIMENT AND RESULTS
To compare the estimators , , , and , we
have considered the mean squared error (MSE) as
statistical error criteria. The formulas that used to compute
MSE is as follows:= ∑ − (39)
Where is the estimate of at the j th replicate (run).
The number of replication used was L = 3000 samples
from the inverted exponential distribution of sizes n = 10,

15, 25, 30, 50 and 100 to represent small, medium, and
large dataset. The values of the parameters chosen to be , θ
= 1 and 3. The values of the hyper-parameters of inverted
gamma and gumbel type II prior distributions chosen to be( , ) = (4, 4), (3, 2), (6, 10) and b=3,5. The constant of
the extension of Jeffrey and general entropy loss function
chosen to be k=1, 3 and c=±2 , ±5. The simulation
program has been written by using MATLAB (R2011b)
program. The results of Monte-Carlo simulation have been
summarized in the tables (1)…(5).

TABLE 1: MSE Values for Maximum Likelihood Estimator of

n=10 n=15 n=25 n=30 n=50 n=100
1 0.0972233 0.0628100 0.0396510 0.0331380 0.0202021 0.0100923
3 0.9071278 0.5845579 0.3802260 0.2878400 0.1792408 0.0924489
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TABLE 2: MSE Values for Semi-Minimax Estimator of with Inverted Gamma Prior
=3=1βαn

c = 5c = -5c = 2c = -2c = 5c = -5c = 2c = -2
1.09979330.77769500.85242600.65524330.05355160.16034760.04759960.076305544

10 1.13254090.98356580.88562290.73045340.08303610.14287840.06616570.075378023
0.86933290.55345240.65833980.48688610.04290120.35540710.08013220.1890804106
0.71246860.52702290.56327880.46053550.04142550.09107730.03799230.052996244

15 0.72024530.61921040.57556840.49903710.05829120.08138570.04838360.052672623
0.59413720.41551750.46337340.37088810.03426020.19578220.05625150.1151840106
0.45217380.35411010.37872400.33131240.03007810.05002890.02882270.035581244

25 0.45272870.38800370.38339130.34800970.03771820.04614080.03345320.035594823
0.39907950.30518310.33216270.28790670.02640930.09411850.03701540.0626941106
0.34738230.27165060.29151870.25607900.02636610.04003980.02535480.030092644

30 0.34574770.29393340.29336420.26680620.03210300.03735250.02884980.030216723
0.31181280.23964920.26044930.22724700.02324230.07158260.03106670.0495690106
0.20688640.17267590.18254340.16754320.01728220.02310020.01706560.019219344

50 0.20544140.18074160.18300180.17170000.01951290.02196270.01835880.019165423
0.19287160.15987920.16984920.15547170.01631510.03588620.01981550.0274529106
0.10031360.09069680.09336830.08933200.00931410.01082070.00925900.009838744

100 0.09974190.09277460.09345330.09046900.00993280.01052360.00961360.009826923
0.09663330.08720810.08989450.08594530.00902180.01423020.01001770.0120767106

TABLE 3: MSE Values for Semi-Minimax Estimator of with Gumbel Type II Prior
=3=1

kn
c = 5c = -5c = 2c = -2c = 5c = -5c = 2c = -2

0.73708692.90733180.70181411.24467310.05822610.57565370.09019870.24260943
10

0.62473673.58238410.68999001.49430340.08325170.96900570.16529460.44174085
0.50005431.34099500.48735420.74059350.04387770.23524140.05962530.12384563

15
0.44484461.59539870.48604720.85324610.05622270.37933180.09558960.20854305
0.34975520.60577290.34207580.42858930.03168760.09436410.03831890.06121193

25
0.32423260.68193080.33875490.46471150.03673730.13986730.05231410.09092225
0.26918800.44003050.26303090.32237140.02743240.06924820.03203440.04757053

30
0.25154870.49232120.26152850.34824830.03084710.09959810.04171820.06780895
0.17309870.22870430.17004090.19042970.01799370.03318980.01997310.02581773

50
0.16575910.24582920.16898540.19908350.01954330.04377090.02385090.03328075
0.09081060.10428770.09003120.09519630.00951480.01319040.01003350.01147693

100
0.08883850.10835860.08973810.09731560.00991930.01572030.01102910.01332105

TABLE 4: MSE Values for Minimax Estimator of with Jeffrey's Prior
=3=1

n
c = 5c = -5c = 2c = -2c = 5c = -5c = 2c = -2

0.86529733.85939620.84209841.55643860.09820790.41339460.09084080.165522410
0.56066241.57978660.55232140.85463460.06320720.16382180.06014690.089137115
0.37614980.66255300.36943910.46586830.03965120.07004510.03857700.048734825
0.28627630.47342160.28056510.34540300.03336910.05285610.03244270.039137130
0.17982030.23855950.17684240.19836490.02004330.02720790.01987630.022520950
0.09260000.10645010.09183190.09713920.01005900.01173200.01001080.0106540100

TABLE 5: MSE Values for Minimax Estimator of with Extension of Jeffrey's Prior
=3=1

kn
c = 5c = -5c = 2c = -2c = 5c = -5c = 2c = -2

0.99543722.13677740.83318651.03689420.11051250.22764990.09119120.11057891
10

1.81566540.86529731.49842291.09210710.20332370.09820790.16767890.12162603
0.62945331.04921420.54446170.64304320.07194480.10893080.06082590.06822801

15
1.14232310.56066240.92945100.68189980.13145060.06320720.10713460.07826963
0.40722080.51999910.36842470.39940590.04329480.05457250.03869370.04164651

25
0.66415220.37614980.55127240.43060220.07242840.03965120.05969960.04598613
0.30944640.38077600.28040530.30079740.03610970.04290510.03262970.03445431

30
0.50608770.28627630.41837140.32678060.05843030.03336910.04854050.03811413
0.18945170.20953300.17728040.18357150.02101300.02383420.01981240.02074561

50
0.27581500.17982030.23602650.19655900.03027480.02004330.02596640.02175373
0.09518290.09974370.09192690.09353260.01032230.01095770.00999620.01022591

100
0.12013260.09260000.10827970.09709590.01300890.01005900.01172220.01052323
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5. CONCLUSIONS & RECOMMENDATIONS
The most important conclusions and recommendations
based on simulation experiment are:

1. Depending on MSE values, the maximum
likelihood method gives estimate values better
than Bayes method for all sample sizes
corresponding to:
 Inverted gamma prior with ( = 6, = 10) for

negative values of ( ) when = 1 as well as
with = = 4 for( = 5) and with ( = 3, =2) for ( = ±5) when ( = 3).
 Gumbel type II prior with different values of ( )

and negative values of ( ) when ( = 1,3) while
with ( = 5, = 2) when( = 1).
 Jeffrey's prior based on general entropy (with

negative values) for different values of ( ).
 Extension of Jeffrey's prior with ( = 1) for

negative and large positive values of ( ) as well
as with ( = 3) except with ( = −5).

2. Semi-minimax estimate for the parameter of IED
corresponding to inverted gamma prior with
hyper-parameters (α = 6 < = 10) under
general entropy loss function with large positive
or large negative values of (c) represent the best
estimate when (θ = 1) and (θ = 3) respectively
for different sample sizes.

3. Informative Gumbel type II prior doesn't record
any appearance as best prior with = 1. While
with = 3, record appearance when = 5 with
positive values of . It is important to mention
that for small positive value of , = 2 , Gumbel
type II prior when = 5 is the best prior for large
sample sizes.

4. Between non-informative prior distributions,
Jeffrey's prior doesn't record any appearance as
best prior while extension of Jeffrey's prior with( = 3) record appearance as best prior for one
time under general entropy loss function with( = −5) and that appearance disappear with the
large value of , = 3.

5. With two values of the parameter , the MSE
values associated with semi-minimax estimates
corresponding to Gumbel type II prior under
general entropy loss function (with negative
values of ) are increase as hyper-parameter
value, , increase.

6. The MSE values associated with all estimates
corresponding to different values of and ( )
except with( = −5), are increases as extension
constant ( ) increases.

7. The MSE values associated with all estimates
reduce with the increase in the sample size and
this conforms to the statistical theory. For large
sample size( = 100), all the estimators have
approximately the same MSE values.

8. In some sense, Jeffrey's prior and extension of
Jeffrey's prior for specific values of ( ) can get
equivalent estimates based on general entropy
loss function, such that, Bayes estimates
corresponding to Jeffrey's prior under general
entropy loss function with (c = 5) are equivalent

to that estimates with (c = −5) corresponding to
extension of Jeffrey's prior with ( = 3)

9. Minimax estimates corresponding to Jeffrey's
prior, with the assumption of general entropy loss
function with ( = 2) are having the minimum
MSE values for all sample sizes and values of .

10. Bayes estimators under general entropy loss
function introduce semi-minimax estimators
corresponding to informative priors and introduce
minimax estimators corresponding to non-
informative priors. The performance of the
minimax and semi-minimax estimators depends
on the values of the hyper-parameters and
constants that have had a significant impact on
the performance of these estimators.

11. With two values of , the performance of Bayes
estimates under general entropy loss function
with positive values of ( ) is better comparing to
negative values with all sample sizes
corresponding to Gumbel type II, Jeffrey and
extension of Jeffrey (with = 1) priors.

In the light of the conclusions that being obtained for the
estimation of the parameter of IED, some
recommendations have been put forward:

1. Using inverted gamma prior with hyper-
parameters ( = 6 < = 10) as an appropriate
prior distribution under general entropy loss
function with large positive value of ( ) for the
situation that( = 1).

2. Using Gumbel type II with ( = 5) as an
appropriate prior distribution under general
entropy with large positive value of ( ) for the
situation that( = 3).

3. Using extension of Jeffrey with ( = 3) as an
appropriate prior distribution under general
entropy with small negative value of ( ) for the
situation that( = 1).
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