SLOBAL JOURNAL OF BIO-SCIENCE AND BIOTECHNOLOGY

© 2004 - 2015 Society For Science and Nature (SFSN). All rights reserved

www.scienceandnature.org

QUANTITATIVE ESTIMATION OF HAEMOLYMPH PROTEIN DURING DIFFERENT DAYS OF V INSTAR LARVAE IN BIVOLTINES, MULTIVOLTINES AND MUTANTS OF THE *BOMBYX MORI*

Shivkumar & G. Subramanya Department of Studies in Sericulture, University of Mysore, Mysore – 570006, Karnataka, INDIA

ABSTRACT

An experiment was carried out utilizing two different voltine groups comprising indigenous and exotic races/breeds of mulberry silkworm *Bombyx mori viz.*, six bivoltines; C₁₀₈, Kalimpong-A (KA), NB₄D₂, CSR₂, P₃₁, NB₁₈, six multivoltines; Pure Mysore (PM), Nistari, C.nichi, MU₁, npnd Hosa Mysore (HM) and six mutants namely, zebra, ursa, knobbed, pere (pink eyed red eggs) lemon and pre (Precocity). The haemolymph was extracted from 2nd, 4th and 5th days of V instar larvae by puncturing abdominal legs and the haemolymph was collected in pre-chilled eppendorf tubes containing 1mM thioureacrystals to prevent melanization. The different samples for the protein assay along with standard were prepared and the quantitative protein estimation was made utilizing Lowry's method and obtained data was subjected to standard statistical analysis. The mean value of haemolymph protein content recorded at V instar 2nd day showed, a highest of 45.01±1.110 (mg/ml) in NB₁₈ race, whereas a lowest of 29.26±0.079 (mg/ml) in *npnd* race. During V instar 4th day, the quantitation of protein content highest in CSR₂ breed (47.90 ± 1.335 mg/ml), whereas a lowest total protein content was recorded in C.nichi race (30.99±0.510 mg/ml). Further, the total of protein content was a maximum in CSR₂ breed (45.19±1.301mg/ml), whereas a lowest of 25.99±0.666 (mg/ml) haemolymph protein content was exhibited by *npnd* race during V instar 5th day. Perusal of average mean data from the eighteen races/breeds clearly indicates that, the total of protein content significantly increased during 2nd and 4th day of V instar with declining trend on 5th day of V instar. The general trend of variation in the haemolymph proteins among the eighteen genotypes is a noteworthy investigation useful for silkworm breeding and genetics.

KEYWORDS: Haemolymph protein, Quantitative estimation, Bivoltines, Multivoltines, Mutants, Bombyx mori.

INTRODUCTION

Haemolymph of the insects are very commonly utilized in understanding the genetic differences existing between the population and such differences in understanding the population structure of different species of Drosophila is well documented (Hubby and Lewontin, 1966; Lewontin and Hubby, 1966). In fact, Silkworm, Bombyx mori is one of the popular beneficial insects for the production of sleek, sensuous silk fibre, which is considered as "Queen of Textiles". The silkworm belongs to family Bombycidae. which produces two types of proteins that get converted into a delicate twin thread of silk fibroin, coated by a protective cover of sericin (Mondal et al., 2007). The process of silk production involves sequential interlinked mechanism of silk production from mulberry as food to protein and protein into silk fibre. During this process haemolymph of V instar mainly contributes towards silk protein biosynthesis in the different compartments of the silk gland and final products of silk proteins are fibroin and sericin and form the main component of silk fibre from the total silk produced. The biochemical characterization through protein profiling is very important in the lepidopteran insects, since proteins may change with physiological state, age, race and sex (Wigglesworth, 1965 and Chapman, 1998). It is important to note that protein variation occurs at every stages of Development, such type of variations in the proteins of the domesticated silkworm *Bombyx mori* is quite significant in understanding the genetic constitution of a race/breed. Proteins are the key factors within the cells, known to be governed by genes and it is evident from the biochemical changes reflected in the larva (Singh and Singh, 1987; Poonia, 1985 and Eid *et al.*, 1989). Keeping the above concept in the mind, we have subjected eighteen silkworm genotypes belonging to bivoltines, multivoltines and mutants to understand the variability of haemolymph protein content at 2^{nd} , 4^{th} and 5^{th} days during V instar larval stage of the silkworm *Bombyx mori*.

MATERIALS & METHODS

Parental seed cocoons of the above said eighteen races/breeds and mutants were collected from the Germplasm Bank of Department of Studies in Sericulture, Manasagangotri, Mysore and layings were prepared and reared by adopting the methods described by Tazima (1978) and Krishnaswami (1978) respectively. The haemolymph was extracted from 2^{nd} , 4^{th} and 5^{th} days of V instar larvae by puncturing abdominal legs and the haemolymph was collected in pre-chilled eppendorf tubes containing 1mM thiourea- crystals to prevent melanization. The samples for the protein assay were prepared by using above mentioned different days of V instar larvae haemolymph and all the eighteen races/breeds

and mutants were selected for the biological assay. The protein was estimated through standard procedure suggested by Lowry *et al.* (1951). For accurate quantification, the sample protein is compared with a known amount of a standard protein used Bovine Serum Albumin (BSA).

RESULTS

The observation obtained from the quantitative estimation of protein is presented in the table-1, which represents the total haemolymph protein content with standard errors (\pm SE) in the crude extracted haemolymph protein among the eighteen races/breeds. The perusal of the data clearly indicates, significant variation of protein content according to different days (2nd, 4th & 5th) of V instar larval developmental stage among the eighteen races/breeds and mutant stocks selected for the study. The mean value of haemolymph protein content recorded at V instar 2nd day

showed a highest of 45.01±1.110(mg/ml) in NB₁₈ race, whereas a lowest of 29.26±0.079(mg/ml) mean value protein content was found in *npnd* race. Similarly, the total content of protein is highest in CSR₂ breed (47.90±1.335mg/ml), whereas lowest was recorded in C.nichi race (30.99±0.510mg/ml) during V instar 4th day and remaining races/breed showed intermediate protein content. Further, the protein is highest in CSR₂ (45.19±1.301 mg/ml), whereas a lowest of 25.99±0.666 (mg/ml) haemolymph protein content was exhibited by npnd race and remaining races have exhibited inbetween during V instar 5th day. Furthermore, the average mean values were drawn from over all the eighteen races/breeds, the average haemolymph protein content of V instar during 2nd, 4th and 5th days were exhibited 38.60±0.724 (mg/ml), 41.32±0.887 (mg/ml) and 38.032±0.828(mg/ml) respectively.

TABLE 1: Mean values (±SE) of haemolymph protein content at V instar 2nd, 4th and 5th day in eighteen races/breeds of the silkworm, *Bombyx mori*

Sl.no.	Races/breeds/	Haemolymph protein content & \pm SE (mg/ml)		
	mutants	during V instar		
		2 nd day	4 th day	5 th day
1	C ₁₀₈	42.45 ± 1.025	46.89 ± 1.259	41.95 ± 1.010
2	KA	44.40 ± 0.620	47.78 ± 1.251	43.35 ± 0.845
3	NB_4D_2	40.55 ± 0.411	43.40 ± 1.199	40.11 ± 1.091
4	CSR ₂	44.95 ± 1.291	47.90 ± 1.335	45.19 ± 1.301
5	P ₃₁	41.09 ± 1.502	43.00 ± 1.091	41.10 ± 0.655
6	NB_{18}	45.01 ± 1.110	46.99 ± 1.141	43.05 ± 0.900
7	Pure Mysore	37.99 ± 0.092	39.51 ± 0.230	40.59 ± 0.841
8	Nistari	36.76 ± 0.915	38.59 ± 0.951	32.01 ± 1.005
9	C.nichi	30.00 ± 0.411	30.99 ± 0.510	28.90 ± 0.088
10	MU_1	32.11 ± 0.715	37.33 ± 0.912	34.56 ± 0.750
11	npnd	29.26 ± 0.079	31.05 ± 0.059	25.99 ± 0.666
12	Hosa Mysore	33.30 ± 0.511	40.66 ± 0.750	35.50 ± 0.856
13	zebra	39.51 ± 0.550	38.90 ± 1.009	36.65 ± 0.991
14	ursa	37.99 ± 0.612	35.89 ± 1.105	33.00 ± 0.852
15	knobbed	40.02 ± 0.705	43.59 ± 1.045	41.10 ± 1.009
16	pere	41.25 ± 0.205	46.88 ± 0.491	44.40 ± 0.852
17	lemon	40.11 ± 0.099	45.55 ± 0.735	40.55 ± 0.711
18	pre	38.06 ± 0.080	38.00 ± 0.901	36.59 ± 0.493
Average		38.60±0.724	41.321±0.887	38.032 ± 0.828
Dongo		29.26±0.079 -	30.99±0.510 -	25.99±0.666 -
Kange		45.01±0.110	47.90±1.335	45.19±0.301

DISCUSSION

In the present investigation, an attempt has been made utilizing haemolymph protein to understand the quantitation of haemolymph protein content during 2^{nd} , 4^{th} and 5^{th} days of V instar larval developmental stage in the eighteen races/breeds and mutants of the silkworm *Bombyx mori*. The haemolymph protein was estimated quantitatively (mg/ml) following the method suggested by Lowry *et al.* (1951). Based on the results, it is clearly indicated that, the quantity of soluble protein content varies in the eighteen races/breeds during 2^{nd} , 4^{th} and 5^{th} days of V instar. It is an evident from the results shown in Table-1, CSR₂ on the 4^{th} day recorded highest amount protein content of 47.90 ± 1.335 mg/ml, whereas the lowest

of 25.99 ± 0.666 mg/ml was observed in *npnd* on the 5th day, while all the other observations were intermediary between them.

From the obtained results, it is clear that, gradual increase from 2^{nd} day to 4^{th} day, it is due to the fact that the silkworm is an voracious eater especially at this period, but during 5^{th} day the haemolymph protein content gradually decreases. This type of phenomenon was observed by Sarangi, (1985), he clearly shown that, It is possibly because of the soluble protein in silkworm gets converted into the silk fibre during this period. The present findings also corroborates with the results of Muralimohan (2005), who, while studying the day-to-day biochemical studies in the V instar larvae, demonstrated that the

soluble protein concentration is variable among the races and was more conspicuous in the V instar 5th day. It is in this context the author in the present investigation has utilized 2nd, 4th and 5th days of V instar larval haemolymph protein as the material for the study, since the quantification of protein may be considered as nonambiguous indicators of pure races (Gamo, 1977). Further, Murray et al., (1972) in their investigation pointed out that, the variation of the protein content changes in terms of increases protein content as the growth rate proceeds till some extents of the porcine uterine. Moreover, also few observations suggested by Hill and Breidenbach, (1974) in soybean plants, fresh weight and dry weight as well as quantitative protein changes in the developing soybean (Glycinemax) seed were described from 12 days after flowering until maturity. Apart from this, several research investigations were carried out on haemolymph protein concentration utilizing haemolymph are Sarangi, (1985); Nagata and Yoshitake, (1989) and Ravikumar and Sarangi, (2000), etc, who have reported that variation in total protein depends on the larval developmental stages of the silkworm Bombyx mori. The result also clearly demonstrated a general trend of increase in total protein content (with few exceptions) during 4th day of V instar then decreasing the protein during late 5th day of V instar. The present findings from quantitative estimation have clearly showed protein variability (genetic differences) between silkworm races/breeds, which will be one of the important yardstick in selecting parents for silkworm genetics and breeding programmes.

ACKNOWLEDGEMENTS

The first author wishes to express sincere thanks to University of Mysore for providing the financial assistance. We are indeed thankful to the Chairman, Department of Studies in Sericulture Science, Manasagangotri, University of Mysore, Mysore for extending the laboratory facilities to carry out the research work.

REFERENCES

Chapman, R.F. (1998) The insects structure and function, fourth edition, Combridge University press, Edinbergh, UK.

Eid, M. A. A., El-Nakkady, A. N. and Saleh, M. A. (1989) Elongation and amino acids profiles of silk produced by larvae of *phiosomia recini* in response to different treatments. *Indian J. Seric.*, 28(2): 238-242.

Gamo, T. (1977) Low molecular weight lipoproteins in the haemolymph of the silkworm, *Bombyx mori:* inheritance, isolation and some properties. *Insect. Biochem.* 8: 457-470.

Hill, J. E. and Breidenbach, R. W. (1974) Proteins of soybean: II Accumulation of the major protein components during seed development and maturation. *Plant Physiol.*, 53: 747-751.

Hubby, J.L. & Lewontin, R. C. (1966) A molecular approach to the study of genic heterozygocity in natural Populations.I.

The number of alleles at different loci in *Drosophila Pseudobscura*. *Genetics.*, 54: 577-594.

Krishnaswami, S. (1978) New techniques of silkworm rearing. *CSRTI Bulletin* No. 2: CSRTI, Mysore, India, pp.1-23.

Lewontin, R. C. and Hubby, J. L. (1966) A molecular approach to the study of genic heterozygocity in natural population II. Amount of variation and degree of heterozygocity in natural populatios of *Drosophila Pseudobscura. Genetics.*, 54: 595-609.

Lowry, O. H., Rosebrough N. J., Farr. A. L. and Randal, R. J. (1951) Protein measurement with the Folin phenol reagent. *J. Biochem.*, 193: 265-275.

Mondal, M., Trivedy, K. and Nirmal kumar, S. (2007) The silk proteins, sericin and fibroin in silkworm, *Bombyx mori* Linn.- a review. *Casp. J. Env. Sci.*, 5(2), 63-76.

Murli Mohan, P. (2005) Day to day biochemical changes in the fifth instar larvae of the silkworm *Bombyx mori* L. Advance in Tropical Sericulture, *National Academy of Sericultural Sciences, India* (NASSI), Bangalore, 296-301.

Murray, F. A., Fuller, W. B., Wallace, H. D and Warnick, A. C (1972) Quantitative and qualitative variation in the secretion of protein by the porcine uterus during estrous cycle., *Biology of Reproduction.*, **7**, 314-320.

Nagata, M. and Yoshitake, N. (1989) Protein metabolism in the larval development of silkworm, *Bombyx mori*, protein re-utilization at the moult., *J. Serico*. 58(3): 221-223.

Poonia, F. S. (1985) Consumption, digestion and utilization of castor leaves by larvae of eri silkworm, *philosomia recini*, *Inidian J. Ent.*, 47(3): 253-267.

Ravi Kumar, H. N. and Sarangi, S. K. (2000) Changes in the concentration of soluble protein and free amino acids during fifth instar development of eri silkworm, *Philosamia ricini*. In: Advances in Tropical Sericulture (Eds. S.B. Dandin, R.K. Mishra, V.P. Gupta and Y.S. Reddy). *National Academy of Sericulture Sciences* India, Bangalore, pp. 433-436.

Sarangi, S. K. (1985) Alkaline protease in the midgut of the silkworm, *Bombyx mori* L. Changes during metamorphosis., *Proc. Indian. Acad. Sci. (Anim. Sci.)*, 94(5): 567-572.

Singh, S.P. and Singh, M.K. (1987) Changes in protein metabolism in the middle and posterior silk gland tissues of eri silkworm, *philosomia recini* in reaction to spinning process., *Entomon.*, 9(4): 253-256.

Tazima, Y. (1978) *The Silkworm an important laboratory tool.* National Institute of Genetics Kodansha Tokyo, Japan.

Wigglesworth, V.B. (1965) The principles of insect physiology. English language Book Society and Methuen, New Fetter Lane, pp. 369-456.