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ABSTRACT
This paper is considered with Kumaraswamy distribution. The maximum likelihood, Bayes and empirical Bayes methods
of estimation are used for estimating the unknown shape parameter, reliability and failure rate functions of Kumaraswamy
distribution under complete samples assuming that the other shape parameter is known. The performance of estimators is
showed by demonstrating some numerical illustrations through Monte Carlo simulation study.
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INTRODUCTION
A two-parameter Kumaraswamy distribution on (0, 1) has
been proposed by Kumaraswamy (1980)[10]. The

probability density and cumulative distribution functions
of a Kumaraswamy distributed random variable are given
by [7]:

( ; , ) =   1 −  ; 0 < < 1 (1)( ; , ) = 1 − 1 −  ; 0 < < 1 (2)
Where > 0 and  > 0 are the shape parameters. The corresponding reliability function, ( ), and failure rate function,ℎ( ), at mission time t are given as [7]:( ) = 1 − ( ; , ) = 1 −  ; 0 < < 1; ,  > 0 (3)ℎ( ) = ( )( ) = 1 −  ; 0 < < 1 ; ,  > 0 (4)
Kumaraswamy distribution (KD) is applicable to many
natural phenomena whose outcomes have lower and upper
bounds, such as the height of individuals, scores obtained
on a test, atmospheric temperatures, hydrological data
such as daily rain fall, daily stream flow, etc.[12]

Ponnambalam et  al. (2001)[11] pointed  out  that  KD can
be used to approximate many distributions, such as
uniform, triangular, or almost any single model
distribution and can also reproduce results of beta
distribution depending on the choice of the shape
parameters. Jones (2009)[9] discussed the basic properties
of KD. Garg (2009)[6] considered the generalized order
statistics from KD. Cordeiro et al. (2010)[4] introduced and
studied some mathematical properties of the
Kumaraswamy Weibull distribution as a quite flexible
model in analyzing positive data. Gholizadeh et
al.(2011)[7] studied the maximum likelihood and Bayes
estimators for the shape parameter, reliability and failure
rate functions of the KD in the cases of progressively type
II censored samples. Gholizadeh et al. (2011)[8] obtained

classical and Bayesian estimators for the shape parameter
of the Kumaraswamy distribution using grouped and
ungrouped data under three different loss functions.
Cordeiro et al. (2012)[3] proposed a new distribution
referred to as Kumaraswamy Gumbel distribution and
provide a comprehensive treatment of its structural
properties. Sindhu et al. (2013)[12] obtained the maximum
likelihood and Bayes estimators using asymmetric loss
functions for the shape parameter of KD under type-II
censored samples. Eldin et al. (2014)[5] derived the
maximum likelihood and Bayes estimators using squared
error loss function for the two shape parameters of KD
based on general progressive type II censoring.

Maximum Likelihood Estimator (MLE): Let =( ,… , ) be the life time of a random sample of size n
drawn independently from KD defined by (1). The
likelihood functions for the given sample observations are
defined as:
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,  = ( | , ) =  ( ) ∑ ( ) ( ) ∑  (5)
The MLE of the unknown shape parameter, , denoted by

, assuming that the other shape parameter, , is known
yields by taking the derivative of the natural log-likelihood
function with respect to and setting it equal to zero as:

= ; = − 1 −  (6)
The MLEs of ( ) and ℎ( ), based on the invariant property of the MLE, are defined as:( ) = 1 −  (7)ℎ( ) = 1 −  (8)

Where as in (6).

Bayes Estimator (BE): Bayes approach is concerned with
generating the posterior distribution of the unknown
parameter given both the data and some prior density for
this parameter. The posterior density function of unknown

parameter, , results by combining the likelihood function,,  , with the density function of prior distribution,( ), as:

| = , | ( )∫ , | ( ) (9)
Bayes estimation, depending on the posterior distribution,
is based in minimization of a Bayesian loss (risk) function
which defined as an average cost-of-error function. There
are two types of loss function: symmetric and asymmetric
loss functions. The symmetric loss function associates
equal importance to the losses due to overestimation and

underestimation of equal magnitude [2]. We have been
adopted the squared error (SELF) loss function and
precautionary loss function (PLF) to represent the two
types of loss functions respectively. The SELF and PLF
can be expressed respectively as [1]:

, = − (10), = − (11)
So, Bayes estimators of , ( ) and ℎ( ) based on SELF, denoted by , ( ) and ℎ( ) can be obtained as:= | ⇒ = ( | ) (12)

( ) = ( )| ⇒ ( ) = ( ) ( | ) (13)ℎ( ) = ℎ( )| ⇒ ℎ( ) = ℎ( ) ( | ) (14)
And Bayes estimator of , ( ) and ℎ( ) based on PLF, denoted by , ( ) and ℎ( ) , can be obtained as:= | ⇒ ( ) = ( | ) (15)

( ) = ( )| ⇒ ( ) = ( ) ( | ) (16)
ℎ( ) = ℎ ( )| ⇒ ℎ( ) = ℎ ( ) ( | ) (17)

Now, under the assumption of inverse Levy informative prior of with hyper parameter ‘b’ which is defined as [2]:( ) = 2 ; > 0 ; > 0 (18)
The posterior distribution of the unknown parameter of KD have been obtained by combining (9) with (18) as:
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| =  ( ) ∑ ( ) ( ) ∑  2∫  ( ) ∑ ( ) ( ) ∑  2∞

⇒ | = ∫∞
By using the transformation, = + ⇒ = ⇒ = , we can get the final formula of | as:

| = 2 +
Γ + 12 ; = − 1 −  (19)

from (19), we conclude that: |  Gamma + , + .
Now, by using the expression in (12), (13) and (14), Bayes estimators of , ( ) and ℎ( ) based on SELF will be:= + 122 + (20)

( ) = 1 − 1 − 

2 + (21)
ℎ( ) = + 122 +  (1 − ) (22)

As well as, by using the expression in (15), (16) and (17), Bayes estimators of , ( ) and ℎ( ) based on PLF will be:

= + 12 + 322 + (23)
( ) = 1 − 2 1 − 

2 + (24)
ℎ( ) = + 12 + 322 +  (1 − ) (25)

Empirical Bayes Estimators (BE): Bayes estimators of
, ( ) and ( ) are seen to depend upon the hyper-

parameter ‘b’. If ‘b’ is unknown, then we may use the
empirical Bayes approach to get its estimate from

likelihood function and probability density function of
prior distribution. The marginal probability density
function of T can calculate from (4) and (9) as:

| =  ( ) ∑ ( ) ( ) ∑  2∞

⇒ | = 2  ( ) ∑ ( ) ∞

By using the transformation, = + ⇒ = ⇒ = , we can get the final formula of | as:

| = Γ + 122 + 2  ( ) ∑ ( ) ; = − 1 −  (26)
The MLE of based on ( | ), denoted by which is calculating by taking the derivative of the natural log for (26)
and setting it equal to zero, is:



Shape parameter, reliability and failure rate functions of Kumaraswamy distribution

131

= ; = − 1 −  (27)
The empirical Bayes estimators of , ( ) and ℎ( ) based
on SELF and PLF, denoted by , ( ) , ℎ( ) ,, ( ) and ℎ( ) respectively can be obtained

by replacing the hyper-parameter appears in(20), (21), (22), (23), (24) and (25) by as:

= + 122 + (28)
( ) = 1 − 1 − 

2 + (29)
ℎ( ) = + 122 +  (1 − ) (30)

= + 12 + 322 + (31)
( ) = 1 − 2 1 − 

2 + (32)
ℎ( ) = + 12 + 322 +  (1 − ) (33)

Simulation Study and Results
Monte Carlo simulation study has been conducted to
compare the performance of the estimators that we
obtained in the previous sections for the shape parameter
of KD with respect to their mean square error (MSE) as
well as reliability and failure rate functions of KD with
respect to their integrated mean square error (IMSE). A

random samples of different size n = 10,30 and 50 were
generated independently from KD through the adoption of
inverse transformation method based on different default
values of the parameter , = 1, 2, 3 and fixed at 2.
where:

= ∑ − (34)
( ) = 1 1 ( ) − ( ) (35)
ℎ( ) = 1 1 ℎ ( ) − ℎ( ) (36)

: is the estimate of at the j th replicate (run).
: is the number of sample replicated chosen to be (3000).

: is the number of times chosen to be (4) where ( = 0.2,0.4,0.6,0.8).( ): is the estimates of ( ) at the replicate (run) and time.ℎ ( ): is the estimates of ℎ( ) at the replicate (run) and time.

The simulation program has been written by using MATLAB (R2011b) program. Tables (1)-(3) summarized the results of
Monte-Carlo simulation.
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TABLE 1: Values of Statistical Criteria for Maximum Likelihood, Bayes and Empirical Bayes Estimates with = 1, = 2= 1, = 2
Meth. ( ) ℎ( )

Est. MSE IMSE IMSE
10 ML 1.1060858 0.1630172 0.0064901 0.2000685

BS = 0.5 1.1265234 0.1616434 0.0057561 0.1983824= 1 1.0939354 0.1365334 0.0053185 0.1675653= 1.5 1.0633823 0.1167302 0.0049869 0.1432611
BP = 0.5 1.1789476 0.1915275 0.0053576 0.2350586= 1 1.1448430 0.1608518 0.0050403 0.1974109= 1.5 1.1128681 0.1361866 0.0048204 0.1671397
EBS 1.1060858 0.1630172 0.0059424 0.2000685
EBP 1.1575589 0.1910415 0.0056087 0.2344622
Best Estimate BS = 1.5 BP = 1.5 BS = 1.5

30 ML 1.0255431 0.0384335 0.0023092 0.0471688
BS = 0.5 1.0334885 0.0388362 0.0022337 0.0476630= 1 1.0245058 0.0370386 0.0021885 0.0454569= 1.5 1.0156829 0.0354638 0.0021526 0.0435242
BP = 0.5 1.0502943 0.0414807 0.0021876 0.0509087= 1 1.0411656 0.0393274 0.0021552 0.0482659= 1.5 1.0321992 0.0374094 0.0021317 0.0459119
EBS 1.0255431 0.0384335 0.0022509 0.0471688
EBP 1.0422197 0.0408023 0.0022154 0.0500760
Best Estimate BS = 1.5 BP = 1.5 BS = 1.5

50 ML 1.0165207 0.0274390 0.0019666 0.0336754
BS = 0.5 1.0213589 0.0276446 0.0019359 0.0339277= 1 1.0160880 0.0269368 0.0019158 0.0330591= 1.5 1.0108723 0.0262987 0.0018989 0.0322760
BP = 0.5 1.0314218 0.0287141 0.0019137 0.0352403= 1 1.0260989 0.0278874 0.0018982 0.0342258= 1.5 1.0208319 0.0271329 0.0018859 0.0332998
EBS 1.0165207 0.0274390 0.0019402 0.0336754
EBP 1.0265359 0.0284081 0.0019221 0.0348648
Best Estimate BS = 1.5 BP = 1.5 BS = 1.5

TABLE 2: Values of Statistical Criteria for Maximum Likelihood, Bayes and Empirical Bayes Estimates with = 2, = 2= 2, = 2
Meth. ( ) ℎ( )

Est. MSE IMSE IMSE
10 ML 2.1918298 0.5993581 0.0064661 0.7355829

BS = 0.5 2.1696043 0.5049642 0.0055958 0.6197347= 1 2.0534796 0.3771255 0.0053344 0.4628402= 1.5 1.9501600 0.3021721 0.0054186 0.3708511
BP = 0.5 2.2705695 0.5947587 0.0057632 0.7299381= 1 2.1490408 0.4321229 0.0057917 0.5303377= 1.5 2.0409131 0.3299037 0.0061400 0.4048856
EBS 2.1918298 0.5993581 0.0062113 0.7355829
EBP 2.2938293 0.7024722 0.0063334 0.8621332
Best Estimate BS = 1.5 BS = 1 BS = 1.5

30 ML 2.0695718 0.1524822 0.0022222 0.1871390
BS = 0.5 2.0672066 0.1464201 0.0021098 0.1796991= 1 2.0316591 0.1331499 0.0020641 0.1634128= 1.5 1.9973513 0.1232430 0.0020570 0.1512542
BP = 0.5 2.1008219 0.1567210 0.0021229 0.1923413= 1 2.0646963 0.1406659 0.0021141 0.1726371= 1.5 2.0298307 0.1281664 0.0021429 0.1572966
EBS 2.0695718 0.1524822 0.0021825 0.1871390
EBP 2.1032256 0.1631382 0.0021936 0.2002169
Best Estimate BS = 1.5 BS = 1.5 BS = 1.5

50 ML 2.0465293 0.0885210 0.0013487 0.1086404
BS = 0.5 2.0456354 0.0865154 0.0013041 0.1061790= 1 2.0247219 0.0815762 0.0012837 0.1001172= 1.5 2.0042401 0.0776943 0.0012771 0.0953530
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BP = 0.5 2.0657899 0.0904331 0.0013059 0.1109871= 1 2.0446704 0.0845637 0.0012991 0.1037838= 1.5 2.0239868 0.0797899 0.0013060 0.0979249
EBS 2.0465293 0.0885210 0.0013309 0.1086404
EBP 2.0666927 0.0925140 0.0013322 0.1135409
Best Estimate BS = 1.5 BS = 1.5 BS = 1.5

TABLE 3: Values of Statistical Criteria for Maximum Likelihood, Bayes and Empirical Bayes Estimates with = 3, = 2= 3, = 2
Meth. ( ) ℎ( )

Est. MSE IMSE IMSE
10 ML 3.3479368 1.5200942 0.0064312 1.8655878

BS = 0.5 3.2160542 1.0854891 0.0054156 1.3322038= 1 2.9679986 0.7358998 0.0053782 0.9031583= 1.5 2.7581148 0.5974546 0.0059939 0.7332467
BP = 0.5 3.3657173 1.2714931 0.0058441 1.5604835= 1 3.1061181 0.8161250 0.0062434 1.0016174= 1.5 2.8864671 0.6031641 0.0072510 0.7402539
EBS 3.3479368 1.5200942 0.0062228 1.8655878
EBP 3.5037372 1.7860266 0.0064528 2.1919625
Best Estimate BS = 1.5 BS = 1 BS = 1.5

30 ML 3.0924569 0.3540775 0.0021035 0.4345538
BS = 0.5 3.0623097 0.3238884 0.0020043 0.3975031= 1 2.9848991 0.2879197 0.0020042 0.3533593= 1.5 2.9114277 0.2672952 0.0020807 0.3280472
BP = 0.5 3.1121067 0.3430658 0.0020693 0.4210392= 1 3.0334372 0.2982422 0.0021239 0.3660280= 1.5 2.9587710 0.2696565 0.0022533 0.3309452
EBS 3.0924569 0.3540775 0.0020918 0.4345538
EBP 3.1427441 0.3772339 0.0021366 0.4629733
Best Estimate BS = 1.5 BS = 1 BS = 1.5

50 ML 3.0513756 0.1890061 0.0012037 0.2319642
BS = 0.5 3.0346778 0.1796576 0.0011709 0.2204909= 1 2.9889185 0.1678137 0.0011726 0.2059552= 1.5 2.9445440 0.1608136 0.0012022 0.1973640
BP = 0.5 3.0645769 0.1861589 0.0011959 0.2284700= 1 3.0183667 0.1713489 0.0012179 0.2102938= 1.5 2.9735550 0.1615611 0.0012672 0.1982814
EBS 3.0513756 0.1890061 0.0012006 0.2319642
EBP 3.0814392 0.1966894 0.0012185 0.2413938
Best Estimate BS = 1.5 BS = 0.5 BS = 1.5

CONCLUSION & RECOMMENDATION
From table (1) with = and = , it appears that:
 The maximum likelihood, Bayes and empirical Bayes

estimation methods gives estimate values greater than
the default value for the shape parameter of KD (i.e.
overestimate values) with all sample sizes under study.

 Bayes estimation method with hyper-parameter =. based on square error loss function, BS, recorded
the best estimate of the shape parameter and failure rate
function of KD for all sample sizes under study.

 Bayes estimation method with hyper-parameter =. based on precautionary loss function, BP, recorded
the best estimate of the reliability function of KD for
all sample sizes under study.

 Increase the value of hyper-parameter , decreasing the
values of MSE and IMSE associated with BS and BP.

 With Bayes and empirical Bayes methods, using square
error loss function to estimate the shape parameter and
failure rate function of KD is better than using

precautionary loss function while the reverse is true to
estimate the reliability function.

From table (2) with = and = , it appears that:
 The maximum likelihood, Bayes and empirical Bayes

methods gives overestimate values with all sample
sizes under study except BS with = . for small
and moderate sample sizes = , which were
underestimate values.

 BS with = . , recorded the best estimate of the
shape parameter, failure rate and reliability functions
for all sample sizes except = when BS with =

, recorded the best estimate of the reliability function.
 Increase the value of , decreasing the values of MSE

and IMSE associated with BS and BP to estimate the
shape parameter and failure rate function.

 With Bayes and empirical Bayes methods, using square
error loss function is better than using precautionary
loss function to estimate the shape parameter, failure
rate and reliability functions of KD.
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From table (3) with = and = , it appears that:
 The maximum likelihood, Bayes and empirical Bayes

methods gives overestimate values with all sample
sizes under study except BS with = , . and BP
with = . for all sample sizes which were
underestimate values.

 BS with = . , recorded the best estimate of the
shape parameter and failure rate function for all sample
sizes as well as BS recorded the best estimate of the
reliability function with = for = , and
with = . for = .

 Increase the value of , decreasing the values of MSE
and IMSE associated with BS and BP to estimate the
shape parameter and failure rate function.

 Increase the value of , increasing the values of IMSE
associated with BS and BP to estimate the reliability
function for = .

 With Bayes and empirical Bayes methods, using square
error loss function is better than using precautionary
loss function to estimate the shape parameter, failure
rate and reliability functions of KD.

From tables (1) , (2) and (3), it appears that:
 The performance of ML and EBS to estimate the shape

parameter and failure rate function of KD are identical
while the performance of EBS is better than ML to
estimate the reliability function with all sample sizes
under study.

 The MSE and IMSE values are decreasing as the
sample sizes increasing.

 Whenever increase the sample size, increasing
convergence between the estimated values and default
values for the shape parameter.

 With all sample sizes under study, increase the default
value of the shape parameter , increasing MSE and
IMSE values relevant to estimate the shape parameter
and failure rate function of KD.

 With the large sample size ( = ), increase the
default value of the shape parameter , decreasing the
IMSE values relevant to estimate the reliability
function of KD.

In the light of what was stated above, with inverted Levy
prior distribution, we recommended the adoption of Bayes
estimation method based on square error loss function to
estimate the shape parameter, failure rate and reliability
functions of KD when the default value of the shape
parameter is greater than 1.
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