

GLOBAL JOURNAL OF BIO-SCIENCE AND BIOTECHNOLOGY

© 2004 - 2018 Society For Science and Nature (SFSN). All rights reserved www.scienceandnature.org

IMPACT OF POST HARVEST CHEMICAL DIPPING AND WAX COATING ON COLOUR AND TEXTURE OF THE APPLE FRUITS INFECTED WITH SOOTY BLOTCH AND FLY SPECK DISEASE COMPLEX

Sabiha Ashraf¹, N. A. Qazi, Nasreen Fatima², R. Sharma¹, Vaseema Yousuf³ and Z.A. Badri⁴ 1Temperate Sericulture Research Institute, S.K. University of Agricultural Sciences and Technology of Kashmir 2KVK Kargil, S.K. University of Agricultural Sciences and Technology of Kashmir 3KVK Budgam, S.K. University of Agricultural Sciences and Technology of Kashmir 4KVK Melandpora, S.K. University of Agricultural Sciences and Technology of Kashmir

*Corresponding author email- Sabiha ashraf@rediffmail.com

ABSTRACT

Sooty blotch and flyspeck are the two economically important diseases of apple that downgrade the fruits to an unmarketable extent, even just prior to harvest. Calcium hypochlorite (5%), calcium chloride (4%), sodium hypochlorite (3%) along with borax (1%), sodium hypochlorite (3%) with sodium bicarbonate (1%) and controls with and without treatment with water were evaluated as postharvest dips followed by rubbing and coating or non-coating. Wax Shool (1:1) and disinfectant Virosil-Agro (2.5%) were used as test coating materials. Calcium hypochlorite and calcium chloride treated fruits achieved maximum colour scores of 3.12 and 3.02 % compared to 1.89 and 1.57 scores awarded to water dip and no dip treatments, respectively. Coatings also increased the colour score from 2.19 recorded in uncoated fruits to 2.55 in Virosil-Agro and upto a maximum of 2.79 in Wax-Shool coated treatment. With regard to texture, calcium hypochlorite treatment was awarded maximum firmness score of 2.96 compared to 2.58 to 2.85 values scored for rest of the test chemicals. Furthermore maximum firmness score of 2.79 was awarded to Wax-Shool and 2.45 Virosil-Agro treated fruits compared to a value of 2.11 for uncoated fruits.

KEY WORDS: Apple, chemical dips, colour, fly speck sooty blotch, texture, wax coating.

INTRODUCTION

Sooty blotch and flyspeck are the two economically important diseases of pome fruits that have recently assumed the status of major diseases (Ivanovic et al., 2010). Both the diseases often co-exist in the same orchard and on the same fruit (Williamson and Sutton, 2000).The casual pathogens of both the diseases grow on the epicuticular wax layer of apple fruit and barely penetrate the epidermal layer (Hendrix, 1991), yet infected fruits are downgraded resulting in an unacceptable marketable appearance. An attempt was made to evaluate the impact of post-harvest chemical dipping and wax coating on colour and texture of apple fruits infected with sooty blotch and fly speck disease complex.

MATERIALS & METHODS

Cv Red Delicious apples showing typical symptom of sooty blotch and flyspeck disease complex were harvested from orchards of Srinagar district. Unbruised and uncoated rotten fruits of uniform size and colour were selected. The average extent of sooty blotch and flyspeck was recorded before chemical dipping. Five chemical viz. calcium hypochlorite (5%), calcium chloride (4%), sodium hypochlorite (3%) along with borax (1%), sodium hypochlorite (3%) with sodium bicarbonate (1%) and controls with and without treatment with water were evaluated as postharvest dips followed by rubbing and coating or non coating. Wax Shool (1:1) and disininfectant Virosil-Agro (2.5%) were used as test coating materials.

The fruits were first dipped in respective chemical treatment for a period of 10 minutes. The uniform dipping was ensured by turning the fruits continuously while dipping in the respective spray suspension solution of test chemical. Then the fruits were gently rubbed with muslin cloth for 30 sec (Batzer et al., 2002). After rinsing with tap water, the fruits of each treatment including both the checks were divided into three sub treatments such that each sub treatment comprised of 54 fruits. Each sub treatment was replicated thrice in factorial completely randomized design. Then the fruits of each treatment were given coating either with Wax-Shool or Virosil Agro or no coating. After dipping in coating material for 10 min, treated fruits were surface dried in air at room temperature. Thereafter, all the replicate fruits were weighed and stored in cardboard boxes at ambient room temp (5-20°C) for 30 days.

The sensory evaluation of treated apples after 30 days of storage period was scored on a four-point scale (Habibunnisa et al., 1988) by a panel of five judges from SKUAST- K. Fruit samples from each treatment replication were polled and cut into slices for evaluation. The apple pieces for sensory evaluation were presented to judges in coded form and they were requested to note their sensory response on the basis of colour, taste and texture, on the following four-point scale. 4 = Excellent, 3 = Good, 2=Fair, 1 = Poor.

RESULTS & DISCUSSION

Perusal of data (Table 1) revealed that calcium hypochlorite and calcium chloride treated fruits achieved maximum colour scores of 3.12 and 3.02 per cent compared to 1.89 and 1.57 scores awarded to water dip and no dip treatments, respectively. Fruits treated with

sodium hypochlorite alone or in combination with borax or sodium bicarbonate scored 2.59 to 2.79 points. Furthermore, coatings increased the colour score from 2.17 recorded in uncoated fruits to 2.55 in Virosil-Agro and upto a maximum of 2.78 in Wax-Shool coated treatment.

TABLE 1.	Effect of various chemical and wax coatings as post harvest dips on color score of "Red Delicious" apples
	infected with sooty blotch and flyspeck disease complex

	Colour Score* (pt)					
	Coatings					
Treatment	Conc. (%)	Wo **	Ww	Wv	Overall Mean	
		2.17	3.04	2.64	2.62	
Sodium hypochlorite	3.0	(1.46)	(1.74)	(1.62)	(1.61)	
		2.90	3.38	3.08	3.12	
Calcium hypochlorite	5.0	(1.71)	(1.84)	(1.75	(1.77)	
Sodium hypochlorite		2.36	3.05	2.96	2.79	
+ Borax	3.0 + 1.0	(1.52)	(1.75)	(1.72)	(1.66)	
Sodium hypochlorite		2.31	2.84	2.61	2.59	
+Sodium bicarbonate	3.0 + 1.0	(1.51)	(1.68)	(1.61)	(1.60)	
		2.68	3.33	3.05	3.02	
Calcium chloride	4.0	(1.65)	(1.83)	(1.76)	(1.74)	
		1.64	2.08	1.96	1.89	
Water	_	(1.27)	(1.44)	(1.40)	(1.38)	
		1.33	1.73	1.66	1.57	
Check (no dip)	_	(1.14)	(1.31)	(1.28)	(1.24)	
Overall mean		2.19	2.78	2.55		
		(1.47)	(1.67)	(1.60)		
ent	(0.15)					

CD (p= 0.05)	
Treatment	(0.15
Coating	(0.10)
Treatment x Coating	NS

*Based on 4 point scale, 4 excellent; 3 Good; 2 Fair; 1 poor

** Wo, Ww and Wv denote no Wax, Wax-Shool and Virosil-Agro coating.

*** Figures within parenthesis are square root transformed values.

TABLE 2. Effect of various chemical and wax coatings as post harvest dips on texture score of "Red Delicious" apples infected with sooty blotch and flyspeck disease complex

		<u>Texture score* (pt)</u> Coatings			Overall
					Mean
Treatment	Conc. (%)	Wo	**Ww	Wv	
		2.48	2.75	2.63	2.62
Sodium hypochlorite	5.0	(1.57)***	(1.66)	(1.61)	(1.61)
		2.65	3.24	2.98	2.96
Calcium hypochlorite	3.0	(1.63)	(1.90)	1.73)	(1.73)
Sodium hypochlorite + Borax	3.0+1.0	2.28	2.98	2.76	2.67
		(1.50)	(1.73)	(1.66)	(1.63)
Sodium hypochlorite +	3.0+1.0	2.18	3.01	2.55	2.58
Sodium bicarbonate		(1.45)	(1.74)	(1.60)	(1.59)
		2.52	3.16	2.87	2.85
Calcium chloride	4.0	(1.59)	(1.78)	(1.70)	(1.69)
		1.75	2.22	2.06	2.00
Water		(1.31)	(1.49)	(1.51)	(1.44)
	_	1.33	2.16	2.00	1.88
Check (no dip)		(1.14)	(1.46)	(1.38)	(1.35)
Overall mean		2.11	2.79	2.45	
		(1.47)	(1.67)	(1.60)	
p= 0.05)					
Treatment (0.1	,				
Coating (0.1	1)				

reatinent	
Coating	

Treatment x Coating NS

* Based on 4 point scale, 4 excellent; 3 Good; 2 Fair; 1 poor

** Wo, Ww and Wv denote no Wax, Wax-Shool and Virosil-Agro coating.

*** Figures within parenthesis are square root transformed values.

The present findings are in agreement with that of Habibunnisa et al. (1988) thereby confirming the reports that wax coating materials maintains the skin colouration of apples during storage at ambient temperature and relative humidity. However, the interaction of dips and coatings proved to be non-significant. The present findings further indicated that dry rubbing (no dip) and wet rubbing (water dip) could at least increase the scores up to 1.33 and 1.64 percent, respectively but did not seem enough compared to that noticed in chemical dip treatments. The results with regard to texture indicated that calcium hypochlorite treatment was awarded maximum firmness score of 2.96 compared to 2.58 to 2.85 values scored for rest of the test chemicals, with least score for sodium hypochlorite plus sodium bicarbonate treatment. Furthermore, panelists also awarded maximum firmness score of 2.79 to Wax-Shool coated fruits and 2.45 Virosil-Agro treatments compared to a value of 2.11 for uncoated fruits. The combined effect of chemical dipping and coating was observed statistically non-significant but wax coating on fruits dipped in calcium hypochlorite was appreciated by panelists and scored a value of 3.24 compared to 1.33 value averaged for uncoated fruits that did not receive any chemical or water dip (undipped). Thus the study revealed that the chemical dipping and/or coating retained the firmness/ texture of fruits to some extent compared to no dip or water dip or no coating upto 30 days of storage under ambient conditions. Otherwise, apple fruits have been reported to soften during storage due to breakdown of pectic substances (Main et al., 1985; Gupta et al., 1987). The present findings of awarding of lesser score by panelists to undipped or uncoated fruits due to increase in their mealiness has also been noticed by Ajaz (2003) while studying the effect of wax coating on apple texture during storage. Similar results have also been reported in grapes to increase the shelf life by coating of aloe vera (Ali et al., 2016)

REFERENCES

Ajaz Rasool (2000) Effect of post harvest treatments on shelf life of apple (*Malus domestica* Borkh.) cv. Red

Delicious. M.Sc. thesis submitted to Sher-Kashmir university of Agricultural Science and Technology of Kashmir, Shalimar, pp.1-90.

Ali Javed, Pandey, S., Singh, V and Joshi, P. (2016) Effect of coating of Aloe vera gel on shelf life of grapes. *Current Research in Nutrition and Food Science*. 4(1): 58-68

Batzer, J.C., Gleason, M.L., Weldon, B., Dixon, P.M. and Nutter, F.W. (2002) Evaluation of post harvest removal of sooty blotch and flyspeck of apples using sodium hypochlorite, hydrogen peroxide with peroxyacetic acid and soap. *Plant Disease* **86:** 1325-1332.

Gupta, S.K. and Gupta, G.K. (1992) Role of pre-harvest fungicidal sprays and post harvest wax coating against sooty blotch, fly speck and storage rot of apple. *Plant Disease Research* **7**: 161-164.

Habibunnisa, M., Edward, A. and Narasimhan, P. (1988) Extension of storage life of fungicidal waxol dip treated apples and oranges under evaporative cooling conditions. *Journal of Food Science and Technology*, 25: 75-77.

Hendrix, F.F.J. (1991) Removal of sooty blotch and fly speck from apple fruit with chlorine dip. *Plant Disease* **75**: 742-743.

Ivanovic, M.M., Ivanivic, M.S., Batzer, J.C., Oertel, B., and Gleason, M.L. (2010) Fungi in tha apple sooty blotch and flyspeck complex from Serbia and Montengro. *Journal of Plant Pathology* 92(1):65-72

Maini, S.B, Brijesh, D., Lal, B.B. and Anand J.C. (1985) Fruit firmness as a simple index of quality of stored apples. Indian Journal of Agricultural Sciences 55(1):60-61

Wiilliamson, S.M. and Sutton, T.B. (2000) Sooty blotch and flyspeck of apple: etiology, biology and control. *Plant Disease* **84:**714-724.