

# GLOBAL JOURNAL OF BIO-SCIENCE AND BIOTECHNOLOGY

© 2004 - 2018 Society For Science and Nature (SFSN). All rights reserved www.scienceandnature.org

## PHYTOCHEMICAL SCREENING OF LEAF AND ROOT OF MIMOSA PUDICA L. BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)

Krishnamurthy Vijayalakshmi and Rajangam Udayakumar Post Graduate and Research Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam, Tamil Nadu, India \*Corresponding author e-mail: udayabiochem@yahoo.co.in

### ABSTRACT

The aim of the present study is to analyze the chemical composition of ethanolic extracts of leaf and root of *M. pudica* by GC-MS. The ethanolic extracts of leaf and root were prepared and concentrated at 40°C using hot air oven. The concentrated ethanolic extracts were subjected to GC-MS analysis using an instrument Perkin Elmer Clarus 500. The GC-MS analyes showed that the presence of 23 phytocompounds in the ethanolic extract of leaf including n-Hexadecanoic acid (32.46%); 9,17-Octadecadienal, (Z)- (17.96%); 3,7,11,15-Tetramethyl-2-hexadecen-1-ol (12.00%) and Octadecanoic acid (8.31%) and the presence of 17 bioactive compounds in root of M. pudica including Z, E-2-Methyl-3,13-octadecadien-1ol (40.90%); n-Hexadecanoic acid (32.09%); Octadecanoic acid (9.30%) and Cyclohexanecarboxylic acid, 4methoxyphenyl ester (2.62%). So, the present study confirmed that the presence of bioactive compounds in leaf and root of M. pudica. In future, the isolation of bioactive compounds from the leaf and root of M. pudica would be useful for the determination of novel drugs.

KEYWORDS: Phytocompounds; ethanolic extract; Mimosa pudica; leaf; root; GC-MS analysis.

#### **INTRODUCTION**

Plants have a significant role in maintaining human health and improving quality of human life for thousands of years (Lubna Azmi et al., 2011). In the last few years there has been an exponential growth in the field of herbal medicine and these drugs are gaining popularity both in developing and developed countries because of their natural origin. Many traditional medicines in use are derived from medicinal plants, minerals and organic matter (Grover et al., 2002). Nature has been a source of medicinal agents for thousands of years (Nair et al., 2005). The term of medicinal plants include a various types of plants used in herbalism and some of these plants have a medicinal activities. Medicinal plants are the "backbone" of traditional medicine, which means more than 3.3 billion people in developing countries utilize medicinal plants on a regular basis (Davidson-Hunt, 2000). In fact, around 80% of the population from developing countries still uses medicinal plants for their primary health care (Arokiyaraj, 2012). Medicinal plant is an important element of indigenous medical systems in all over the world. The ethnobotany provides a rich resource for natural drug research and development (Farnsworth, 1990). Natural remedies from medicinal plants proved as safe and effective. Many plant species have been used in folklore medicine to treat various ailments (Balamurugan, 2012). The most important biologically active constituents of plants are alkaloids, flavonoids, tannins and phenolic compounds (Kiruba, 2011). Plants containing beneficial phytochemicals may supplement the needs of the human body by acting as natural antioxidants (Boots et al., 2008). Phytochemical analyses are of paramount importance for the identification of new sources of therapeutically and

industrially valuable compounds with medicinal significance and for the best and most judicious use of naturally available materials (Hossain et al., 2011).

Mimosa pudica L. (Mimosaceae) is a common plant in moist waste ground, lawns, open plantations and weedy thickets. It is native from Middle America and now widely distributed in all tropical areas (Sastri, 1962). The parts of the plant such as leaves, flowers, stem, root, and fruits were used as medicines in the traditional healthcare systems (Chowdhury, 2008). The roots and leaves of this plant were commonly used by tribal people for the treatment of headache, migraine, dysentery, fever, piles, insomnia, epilepsy, etc (Merlin, 2009; Joy, 2001). The plant is used as bitter, astringent, acrid, cooling vulnerary, febrifuge, alexipharmic, diuretic, emetic and tonic (Vaidyaratanm, 2001). A variety of pharmacological functions of this plant such as antihyperglycemic (Umamaheswari, 2007), antidiarrhoeal (Balakrishnan, 2006), anticonvulsant (Bum, 2007), cytotoxic (Chowdhury, 2008) and hepatoprotective (Rajendran, 2009) properties were reported. The preliminary phytochemical studies were conducted and revealed that the presence of various bioactive compounds. The presence of phytocompounds in GC-MS analysis of ethyl acetate extract of leaves (Ramesh et al., 2014) and methanolic extract of leaves of M. pudica (Sriram Sridharan et al., 2011) were reported. But, there is no phytochemical study on ethanol extract of leaf and root of *M. pudica*. So, the present study was aimed to analyze the phytocompounds of ethanol extract of leaf and root of M. pudica using gas chromatography-mass spectrometry (GC-MS). Up to our knowledge, this study may be the first

report on phytochemical analysis of ethanolic extract of leaf and root of *M. pudica*.

#### MATERIALS & METHODS Collection of Plant Material

The fresh plants of *M. pudica* L. were collected from natural habitats of Thirupanipet Village, Thanjavur District, Tamilnadu, India. The collected plant was identified by Rev. Dr. S. John Britto, Director, Rabinet Herbarium and Centre for Molecular Systematics, St. Joseph's College, Tiruchirappalli, Tamilnadu, India and deposited in the herbarium (Voucher specimen number: KV 001). The collected plants were brought into the laboratory and washed thoroughly in running tap water to remove the soil particles and adhered debris and then finally washed with sterile distilled water. The leaf and root of *M. pudica* were separated and dried under shade for 10 days at room temperature. Then the plant materials were pulverized into powder. The powdered materials were stored in air tight containers until the time of use.

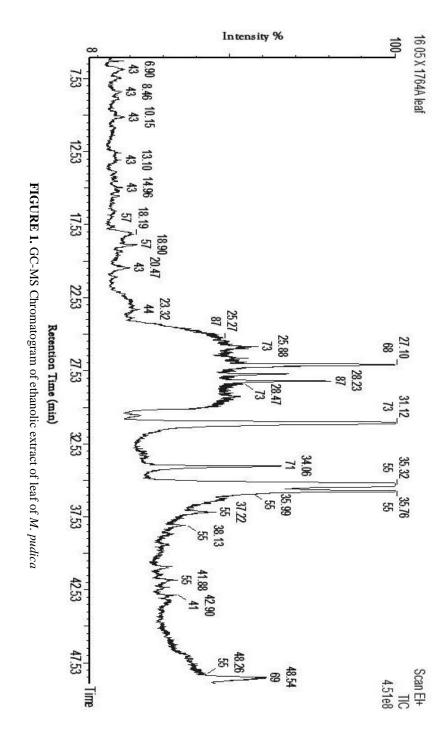
#### **Preparation of Plant Extracts**

The leaf and root of *M. pudica* extracts were prepared according to previously reported procedure (Gopala krishnan and Udayakumar, 2014). For this, 50g of leaf and root powder of *M. pudica* was soaked in 500 ml of ethanol and kept in orbital shaker for 48h. After 48h, it was filtered through Whatman no. 1 filter paper (125 mm) and then the supernatant was concentrated at 40°C till the solvent evaporated completely using hot air oven. The concentrated ethanolic extracts of leaf and root of *M. pudica* were subjected to GC-MS analysis.

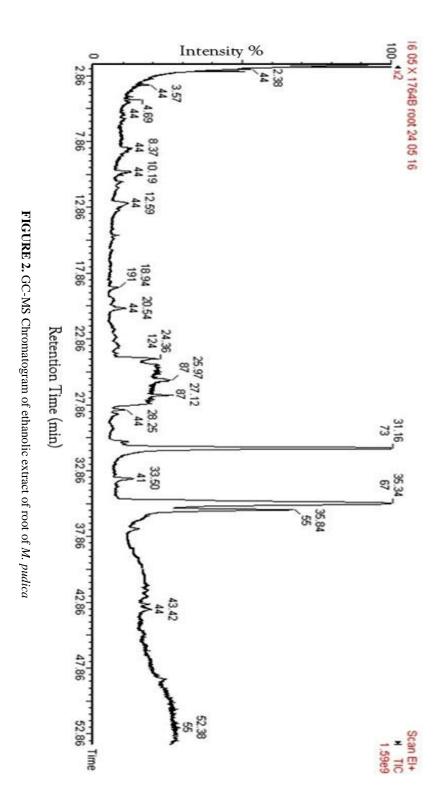
#### **GC-MS Analysis**

The GC-MS analysis was performed to identify the chemical compounds present in the leaf and root of M. pudica by using an instrument Perkin Elmer Clarus 500 (Gopalakrishnan and Udayakumar 2014). The data were obtained on a Capillary Column Elite-5MS [5% phenyl 95% dimethyl poly siloxane]. Helium (99.999%) was used as the carrier gas with a flow rate of 1ml/min in the split mode (10:1). An aliquot of 1µl of methanol solution of the sample was injected into the column with the injector temperature maintained at 270°C. GC oven temperature started at 110°C and holding for 2min and it was raised to 200°C at the rate of 10°C/min without holding. Holding was allowed at 280°C for 9min with the program rate of 5°C/min (60°C@8°C/min to 230°C (5min)@6°C/min to 280°C (10min)). GC interface and ion source temperature was maintained at 200°C. The mass spectrum of compounds in the sample was obtained by electron ionization at 70eV and the detector was operated in scan mode from 40-450 amu (atomic mass units). A scan interval of 0.5 second and fragments from 40 to 450Da were maintained.

#### **Identification of Chemical Compounds**


Interpretation of mass spectra of the extracts of leaf and root of *M. pudica* was conducted using the database of National Institute of Standard and Technology [NIST] library. The NIST library has more than 62,000 spectral patterns for chemical compounds. The spectrum of the

identified compound was compared with the spectrum of NIST library database. The identity of the spectra above 95% was needed for the identification of compounds. The name, molecular weight and structure of the compounds identified and characterized from the extracts of leaf and root of M. pudica were ascertained. The relative percentage amount of each component was calculated by comparing its average peak area with the total area. The spectrum of the unknown component was compared with the spectrum of the component stored in the NIST library using the Turbomass version 5.2.0.


#### RESULTS

The GC-MS chromatogram of ethanolic extracts of leaf and root of *M. pudica* revealed the presence of various compounds with corresponding peaks at different retention time (Figures 1 and 2). The molecular formula, molecular weight, peak area %, retention time, nature and biological activities of identified compounds in ethanolic extracts of leaf and root of M. pudica were represented in Tables 1 and 2. The biological activities of compounds were predicted based on the Dr. Duke's Phytochemical and Ethnobotanical Databases created by Dr. Jim Duke's of the Agricultural Research Service/USDA. The compounds such as 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6methyl-( $C_6H_8O_4$ ); Phenol, 2,4-bis (1,1-dimethylethyl)-(C14H22O); Dodecanoic acid (C12H24O2); 3-O-Methyl-dglucose (C<sub>7</sub>H<sub>14</sub>O<sub>6</sub>); 3,7,11,15-Tetramethyl-2-hexadecen-1ol (C<sub>20</sub>H<sub>40</sub>O); n-Hexadecanoic acid (C<sub>16</sub>H<sub>32</sub>O<sub>2</sub>) and Octadecanoic acid (C18H36O2) were commonly present in both leaf and root of M. pudica. There are phyto compounds such as D-Arabinitol (C5H12O5) 1-Methyl-2, 4, 5- trioxoimidazolidine (C4H4 N2 O3); Piperidine, 3-phenyl- $(C_{11}H_{15}N)$ ; 3-Hexadecene, (Z)- $(C_{16}H_{32})$ ; Sucrose  $(C_{12}H_{22})$ O<sub>11</sub>); 5-Dodecanol (C<sub>12</sub>H<sub>26</sub>O); Myo-Inositol, 4-C-methyl- $(C_7H_{14}O_6)$ ; 2-Pentadecanone-6,10,14-trimethyl  $(C_{18}H_{36}O)$ ; Methyl -d-Mannofuranoside,  $(C_7H_{14}O_6)$ ; Phytol  $(C_{20}H_{40})$ O); 9, 17-Octadecadienal, (Z)- (C<sub>18</sub>H<sub>32</sub>O); E-11-Hexa decenal (C16H30O); Hexadecanoic acid, 2-hydroxy-1,3propanediyl ester (C35H68O5); 7,11-Hexadecadienal (C16 H<sub>28</sub>O); 16-Heptadecenal (C<sub>17</sub>H<sub>32</sub>O) and 2,6,10,14,18, 22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-, (all-E)- $(C_{30}H_{50})$  were found in ethanolic leaf extract of *M. pudica*. The screening of ethanolic root extract of M. pudica were showed that the presence of compounds such as Ethane, 1,1-diethoxy- (C<sub>6</sub>H<sub>14</sub>O<sub>2</sub>); Furan, 2,5-dimethyl- (C<sub>6</sub>H<sub>8</sub>O); 2-Pyrazoline, 1,3,4-trimethyl- (C<sub>6</sub>H<sub>12</sub>N<sub>2</sub>); 2,5-Furandicarboxaldehyde ( $C_6H_4O_3$ ); 2-Furancarboxaldehyde, 5-(hydroxylmethyl)-  $(C_6H_6O_3)$ ; Cyclohexanecarboxylic acid, 4-methoxyphenyl ester ( $C_{14}H_{18}O_3$ ); Pentadecanal- ( $C_{15}H_{30}$ O); Heptadecanoic acid (C<sub>17</sub>H<sub>34</sub>O<sub>2</sub>); Z,E-2-Methyl-3,13octadecadien-1-ol (C19H36O) & 1,2-Benzenedicarboxylic acid, mono (2-ethylhexyl) ester ( $C_{16}H_{22}O_4$ ).

| Name of the                                                               | Molecular                                                   | MW  | Peak area % | RT    | Nature of                 | Activity*                                                                                    |
|---------------------------------------------------------------------------|-------------------------------------------------------------|-----|-------------|-------|---------------------------|----------------------------------------------------------------------------------------------|
| D-Arabinitol                                                              | $C_{5}H_{12}O_{5}$                                          | 152 | 2.2489      | 6.90  | -                         | Nf                                                                                           |
| 1-Methyl-2,4,5-trioxoimidazolidine                                        | C <sub>4</sub> H <sub>4</sub> N <sub>2</sub> O <sub>3</sub> | 128 | 1.1320      | 8.46  |                           | Nf                                                                                           |
| 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-<br>methyl-                    |                                                             | 144 | 0.9462      | 10.15 | Flavonoid                 | Antimicrobial, Anti-inflammatory, Antiproliferative<br>Antioxidant, Automatic nerve activity |
| Piperidine, 3-phenyl-                                                     | C <sub>11</sub> H <sub>15</sub> N                           | 161 | 0.0921      | 13.10 |                           | Nf                                                                                           |
| 3-Hexadecene, (Z)-                                                        | $C_{16}H_{32}$                                              | 224 | 0.3391      | 14.96 |                           | Nf                                                                                           |
| Sucrose                                                                   | $C_{12}H_{22}O_{11}$                                        | 342 | 2.0935      | 18.19 | Carbohydrate              | Nf                                                                                           |
| Phenol, 2,4-bis(1,1-dimethylethyl)-                                       | $C_{14}H_{22}O$                                             | 206 | 1.2056      | 18.90 | Antioxidant compound      | Antifungal, Antioxidant                                                                      |
| Dodecanoic acid                                                           | C1,,H,,,O,                                                  | 200 | 1.0739      | 20.47 | Fatty acid                | Antimicrobial                                                                                |
| 5-Dodecanol                                                               | C <sub>1</sub> ,H,,O                                        | 186 | 0.3501      | 23.32 | 1                         | Nf                                                                                           |
| Myo-Inositol, 4-C-methyl-                                                 | $C_{7}H_{14}O_{6}$                                          | 194 | 0.3137      | 25.27 | Inositol compound         | Antimicrobial                                                                                |
| 3-O-Methyl-d-glucose                                                      | $C_7 H_{14} O_6$                                            | 194 | 1.4998      | 25.88 | Sugar moiety              | Nf                                                                                           |
| 3,7,11,15-Tetramethyl-2-hexadecen-1-ol                                    | $C_{20}H_{40}O$                                             | 296 | 12.0002     | 27.10 | Diterpene                 | Antibacterial, Antidiabetic, Antiinflammatory                                                |
| 2-Pentadecanone-6, 10, 14-trimethyl                                       | C <sub>18</sub> H <sub>36</sub> O                           | 268 | 2.0570      | 28.23 | I                         | Nf                                                                                           |
| Methyl -d-Mannofuranoside                                                 | $C_7 H_{14} O_6$                                            | 194 | 0.0595      | 28.47 | Sugar moiety              | Nf                                                                                           |
| n-Hexadecanoic acid                                                       | $C_{16}H_{32}O_{2}$                                         | 256 | 32.4614     | 31.12 | Fatty acid                | Anti-inflammatory, Antimicrobial, Antioxidant                                                |
| Phytol                                                                    | $\mathrm{C_{20}H_{40}O}$                                    | 296 | 5.7593      | 34.06 | Diterpene alcohol         | Antimicrobial, Antiinflammatory, Anticancer,<br>Antidiabetic, Diuretic                       |
| 9,17-Octadecadienal, (Z)-                                                 | $C_{18}H_{32}O$                                             | 264 | 17.9628     | 35.32 | Aldehyde                  | Antimicrobial                                                                                |
| Octadecanoic acid                                                         | $C_{18}H_{36}O_2$                                           | 284 | 8.3167      | 35.76 | Fatty acid                | Antibacterial, Antiviral                                                                     |
| E-11-Hexadecenal                                                          | C <sub>16</sub> H <sub>30</sub> O                           | 238 | 1.7645      | 37.22 |                           | Nf                                                                                           |
| Hexadecanoic acid,2hydroxy1,3propanediyl ester                            | $C_{35}H_{68}O_{5}$                                         | 568 | 0.7948      | 38.13 |                           | Nf                                                                                           |
| 7,11-Hexadecadienal                                                       | $C_{16}H_{28}O$                                             | 236 | 1.5039      | 41.88 |                           | Nf                                                                                           |
| 16-Heptadecenal                                                           | $C_{17}H_{32}O$                                             | 252 | 0.9594      | 42.90 |                           | Nf                                                                                           |
| 2,6,10,14,18,22-Tetracosahexaene,<br>2,6,10,15,19,23-hexamethyl- (all-E)- | $C_{30}H_{50}$                                              | 410 | 5.0656      | 48.54 | Hydrocarbon and tritemene | Antibacterial, Antioxidant, Antitumor, Cancer                                                |



| Name of the compound                                   | Molecular                                      | MW  | Peak    | RT    | Nature of      | Activity *                                         |
|--------------------------------------------------------|------------------------------------------------|-----|---------|-------|----------------|----------------------------------------------------|
|                                                        | Formula                                        |     | area %  |       | compound       |                                                    |
| Ethane, 1,1-diethoxy-                                  | $C_{h}H_{14}O_{2}$                             | 118 | 0.2239  | 2.38  | 1              | Nf                                                 |
| Furan, 2,5-dimethyl-                                   | C H O                                          | 96  | 0.3437  | 3.57  | Furan group    | 1                                                  |
| 2-Pyrazoline, 1,3,4-trimethyl-                         | C,H,N,                                         | 112 | 0.2542  | 4.69  | Alkaloid       | Anti-inflammatory                                  |
| 2,5-Furandicarboxaldehyde                              | C <sup>H</sup> 1O <sup>2</sup>                 | 124 | 1.3003  | 8.37  | Furan aldehyde | Antifungal                                         |
| 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-    |                                                | 144 | 1.3898  | 10.19 | Flavonoids     | Anti-diabetic, Antioxidant                         |
| 2-Furancarboxaldehyde, 5-(hydroxymethyl)-              | $C_6H_6O_3$                                    | 126 | 2.7951  | 12.59 | Furan aldehyde | Antimicrobial, Preservative Clastogenic            |
| Phenol, 2,4-bis(1,1-dimethylethyl)-                    | C <sub>14</sub> H <sub>22</sub> O              | 206 | 0.7823  | 18.94 | Antioxidant    | Antifungal, Antioxidant                            |
| Dodecanoic acid                                        | $C_{12}H_{24}O_2$                              | 200 | 1.9179  | 20.54 | Fatty acid     | Antimicrobial                                      |
| Cyclohexanecarboxylic acid, 4-methoxyphenyl ester      | $C_{14}H_{18}O_{3}$                            | 234 | 2.6207  | 24.36 |                | Photooxidation                                     |
| 3-O-Methyl-d-glucose                                   | $C_7 H_{14} O_6$                               | 194 | 1.7316  | 25.97 | Sugar moiety   | Reducing toxicity                                  |
| 3,7,11,15-Tetramethyl-2-hexadecen-1-ol                 | $C_{20}H_{40}O$                                | 296 | 1.0340  | 27.12 | Diterpene      | Antibacterial, Antidiabetic, Anti-<br>inflammatory |
| Pentadecanal-                                          | $C_{15}H_{30}O$                                | 226 | 0.6596  | 28.25 |                | Nf                                                 |
| n-Hexadecanoic acid                                    | C <sub>16</sub> H <sub>32</sub> O <sub>2</sub> | 256 | 32.0933 | 31.16 | Fatty acid     | Anti-inflammatory, Antimicrobial,<br>Antioxidant   |
| Heptadecanoic acid                                     | $C_{17}H_{34}O_2$                              | 270 | 1.8399  | 33.50 | Fatty acid     | Nf                                                 |
| Z,E-2-Methyl-3,13-octadecadien-1-ol                    | $C_{19}H_{36}O$                                | 280 | 40.9013 | 35.34 | Fatty alcohol  | Antibacterial, Cytotoxic, Antifungal               |
| Octadecanoic acid                                      | $C_{18}H_{36}O_2$                              | 284 | 9.3062  | 35.84 | Fatty acid     | Antibacterial, Antiviral                           |
| 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester | C, H, O,                                       | 278 | 0.8064  | 43.42 | I              | Nf                                                 |



#### DISCUSSION

For a long period of time, plants have been a valuable source of natural products for maintaining human health. Especially, in recent years, plants with various biological properties have been introduced and the investigation has increased in pharmaceutical and food industries due to the medicine derived from plant sources is free from side effects on human health compared to synthetic substances (Nascimento et al., 2000). In recent years, there has been growing interest in alternative therapies and the therapeutic use of natural products, especially those derived from plants (Goldfrank et al., 1982; Vulto and Smet, 1988). Plants are used as food and medicine and more likely to yield pharmacologically active compounds. The medicinal properties of plants have been investigated in the recent scientific developments throughout the world, due to their potent therapeutic efficacy, antioxidant activity, no side effects and economic viability. Medicinal plants are serving as raw material for drugs and synthesize phytochemicals, which are beneficial for health and they cannot be synthesized by the human body (Martinez et al., 2008). The most important bioactive constituents of plants are alkaloids, tannins, flavonoids and phenolic compounds (Doss, 2009). There is growing awareness in correlating the phytochemical with their biological activities (Fernie et al., 2004; Summer et al., 2003; Robertson, 2005).

Mass spectrometry, coupled with chromatographic separations such as gas chromatography (GC/MS) is normally used for direct analysis of components existing in traditional by used medicinal plants as medicines. In recent years GC-MS studies have increased for the analysis of phytocompounds in medicinal plants and this technique has proved to be a valuable method for the analysis of non polar components, volatile essential oil, fatty acids, lipids, alkaloids, terpenoids and steroids by using a few grams of plant material (Jie and Choi, 1991; Betz, 1997; Sermakkani and Thangapandian, 2012).

In the present study, twenty three compounds in ethanolic leaf extract and seventeen compounds in ethanolic root extract of M. pudica were identified through GC-MS analyses. The nature and biological activities of identified compounds in *M. pudica* were determined based on Dr. Duke's Phytochemical and Ethnobotanical Databases. The ethanol extracts of leaf and root of M. pudica posses furans, flavonoids, fatty acids, sugar derivatives, terpenes and fatty alcohol. The above mentioned nature of phytocompounds reserves their antibacterial, antifungal, antioxidant, antidiabetic, anti-inflammatory, antiviral and anticancer activities. Based on the GC-MS chromatogram, the peak area percentage of n-Hexadecanoic acid was predominant in ethanolic leaf extract and Z, E-2-Methyl-3; 13-octadecadien-1-ol was predominant in ethanolic root extract of *M. pudica*. Among the identified compounds of ethanolic leaf extract, the 4H-Pyran-4-one, 2,3-dihydro-3, 5-dihydroxy-6-methylposses antimicrobial, antiinflamamatory and antiproliferative activities. Phenol, 2,4bis (1,1-dimethylethyl)- has antifungal and antioxidant activities, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol and phytol posses antibacterial, antidiabetic and antiinflammatory activities (Table 1). The root extract showed that the compound 2-Pyrazoline, 1,3,4-trimethyl- posses anti-inflammatory activity, 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- posses antidiabetic activity and

Octadecanoic acid has antibacterial and antiviral activities (Table 2).

In this study the GC-MS analysis of ethanolic extract of leaf and root of M. pudica showed the presence of many phyto compounds. Similarly in the previous studies, the GC-MS analyses of different parts of medicinal plants like leaf, flower and stem of Aerva lanata (Vidhya and Udayakumar, 2015), leaf and stem of Marsilea minuta (Sabithira and Udayakumar, 2017), leaf and stem of Marsilea quadrifolia (Gopalakrishnan and Udavakumar. 2014) and leaf, fruit and latex of Croton bonplandianum (Vennila and Udayakumar, 2015) were carried out and reported many phytocompounds. Based on the Dr. Duke's Phytochemical and Ethnobotanical Databases, the bioactive compounds of ethanolic extract of leaf and root of M. pudica posses several pharmacological activities. The isolation of bio-active compounds in leaf and root of M. pudica will be useful for drug development to control diseases.

### CONCLUSION

The results of this study confirmed that the presence of bioactive compounds such as phenolic compounds, flavonoids, alkaloids, fatty acids, ditrepenes and triterpenes in leaf and root of *M. pudica*. The identified phytocompounds may be responsible for the antimicrobial, antidiabetic, anticancer, cytotoxic and antioxidant properties of *M. pudica*.

#### REFERENCES

Arokiyaraj, S., Sripriya, N., Bhagya, R., Radhika, B., Prameela, L. and Udayaprakash, N. (2012) "Phytochemical screening, antibacterial and free radical scavenging effects of *Artemisia nilagirica*, *Mimosa pudica* and *Clerodendrum siphonanthus*–An in–vitro study," Asian Pacific Journal of Tropical Biomedicine, 2, S601-S604.

Balakrishnan, N., Suresh, D., Pandian, G.S., Edwin, E. and Sheeja, E. (2006) Anti-diarrhoeal potential of *Mimosa pudica* root extracts. Indian J Nat Prod, 22(2), 21-23.

Balamurugan, K., Nishanthini, A. and Mohan, V.R. (2012) GC-MS analysis of *Polycarpaea corymbosa* (L.) Lam whole plant. Asian Pac J Trop Biomed, S1289–S1292.

Betz, J.M., Gay, M.L., Mossoba, M.M., Adams, S. and Portz, B.S. (1997). J AOAC Int., 80, 303.

Boots, A.W., Haenen, G.R. and Bast, A. (2008) Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol, 585, 325–337. [CrossRef] [PubMed]

Bum, E.N., Dawack, D.L., Schmutz, M., Rakotonirina, A., Rakotonirina, S.V. and Portet, C. (2004) Anticonvulsant activity of *Mimosa pudia* decoction. Fitoterapia,75(3-4), 309-314.

Chowdhury, S.A. (2008) Cytotoxicity, Antimicrobial and Antioxidant studies of the different plant parts of *Mimosa pudica*. Stamford Journal of Pharmaceutical Sciences; 1(1, 2), 80-84.

Chowdhury, S.A., Islam, J., Rahaman, M., Rahman, M., Rumzhum, N.N. and Sultana, R. (2008) Cytotoxic, antimicrobial and anti-oxidant activities of the different plant parts of *Mimosa pudica*. S J Pharm Sci, 1(1&2), 80-84. Davidson-Hunt I. (2000) Ecological ethno botany: stumbling toward new practices and paradigms. MASA J. 16, 1–13.

Doss, A. (2009) Preliminary phytochemical screening of some Indian medicinal plants. Anc Sci Life, 29, 12-16.

Farnsworth, N.R. (1990) The Role of Ethno Pharmacology in Drug Development. Ciba Foundation Symposium 154. Bioactive Compounds from Plants. John Wiley & Sons, Baffins Lane, Chichester (England), 2-21.

Fernie, A.R., Trethewey, R.N., Krotzky, A.J. and Willmitzer, L. (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev. Mol. Cell. Biol., 5, 763-769.

Goldfrank, L. (1982) The Pernicious Panacea: Herbal Medicine. Hospital Physician, 10, 64–86.

Gopalakrishnan, K., Udayakumar, R. (2014) GC-MS Analysis of phytocompounds of leaf and stem of *Marsilea quadrifolia* (L.). Int J Biochem Res Rev., 4(6), 517–526.

Grover, J.K., Yadav, S. and Vats, V. (2002) Medicinal plants of India with antidiabetic potential. *J. Ethnophar- macol.* **81:81**–100. [PubMed].

Hossain, M.D., Hanafi, M.M., Jol, H. and Jamal, T. (2011) Dry matter and nutrient partitioning of kenaf (*Hibiscus cannabinus* L.) varieties grown on sandy bris soil. Aust. J. Crop Sci., 5(6), 654-659.

Jie, M.S.F. and C.Y.C.J. Choi, 1991: Int. Fed. Clin. Chem, 3,122.

Joy, P.P., Thomas, J., Mathew, S. and Skaria, B.P. (2001) Medicinal plants. TropHort, 2, 449 632.

Kiruba, S., Mahesh, M., Nisha, S.R., Miller, Z. Paul and Jeeva, S. (2011) Phytochemical analysis of the flower extracts of *Rhododendron arboreum* Sm. ssp. nilagiricum (Zenker) Tagg. doi:10.1136/bmj.329.7479.1408

Lubna Azmi, Manish Kumar Singh and Ali Kamal Akhtar, (2011) Pharmacological and biological overview on *Mimosa pudica* Linn (Review article). International journal of pharmacy and life sciences, 2(11), 1226-1234.

Martinez, M.J.A., Lazaro, R.M., del Olmo, L.M.B. and Benito, P.B. (2008) Anti-infectious activity in the anthemideae tribe. In: Attaur- (Ed.) Studies in Natural Products Chemistry. 35, 45-516.

Merlin, F.F. & Narsimhan, D. (2009) Plant names and uses as indicators of knowledge patterns. Indian J Tradit Know, 8, 645 8.

Nair, R., Kalariya, T. and Sumitra, C. (2005) Antibacterial activity of some selected Indian Medicinal Flora Turk. J. Bot, 29, 41-47.

Nascimento, G.G., Locatelli, J., Freitas, P.C. and Silva, G.L. (2000) "Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria," Braz. J. Microbiol., vol. 31, pp. 247-256.

Rajendran, R., Hemalatha, S., Akasakalai, K., MadhuKrishna, C.H., Sohil, B., Sundaram, V. (2009) Hepatoprotective activity of *Mimosa pudica* leaves against Carbon tetrachloride induced toxicity. J Nat Prod, 2, 116-122.

Ramesh, S., Chandran, C. and Venkatesan, G. (2014) phytochemical and gc-ms analysis of leaf extract of *Mimosa pudica* L. International Journal of Current Research and Development, January, Vol.2 (1), 78 – 87.

Robertson, D.G. (2005) Metabonomics in toxicology: A review. J Toxicol Sci, 85, 809-822.

Sabithra, G. and Udayakumar, R. (2017) GC-MS Analysis of Methanolic Extracts of Leaf and Stem of *Marsilea minuta* (Linn.) Journal of Complementary and Alternative Medical Research 3(1): 1-13.

Sastri, B.N. (1962) *The wealth of India*. Council of Scientific and Industrial Research, New Delhi. 6, 382-383.

Sermakkani, M. & Thangapandian, V. (2012) gc-ms analysis of *cassia italica* leaf methanol extract. Asian J Pharm Clin Res, 5(2):90-4.

Sriram Sridharan, Meenaa Vaidyanathan, Kavitha Venkatesh and Agnel Arul John Nayagam (2011) GC-MS study and phytochemical profiling of *Mimosa pudica* Linn. J Pharm Res., 4(3), 741-742.

Summer, L.W., Mendes, P.J. and Dixon, R.A. (2003) Plant Metabolomics: Large-scale phytochemistry in the functional genomics. Phytochemistry, 62(6), 817-836.

Umamaheswari, S., & Prince, P.S. (2007) Antihyper glycemic effect of ilogen excel, an ayurvedic herbal formulation in streptozotocin-induced diabetes mellitus. Acta Pol Pharm, 64(1), 53-61.

Vaidyaratanm, P.S. (2001) Indian Medicinal Plants Database.1st ed. Kottakkal II, Orient Longman: Arya Vidyashala,36 7.

Vennila, V. and Udayakumar, R. (2015) GC-MS Analysis of leaf, fruits and latex of *Croton bonplandianum* Baill. Int J Biochem Res Rev, 5(3), 187-197.

Vidhya, R. & Udayakumar, R. (2015) Gas chromato- graphymass spectrometry (GCMS) analysis of ethanolic extracts of *Aervalanata* (L.). Int J Biochem Res Rev, 7(4), 192-193.

Vulto, A.G. & P.A.G.M. Smet, (1988) In: Dukes, M.M.G. (Ed.).Meyler's Side Effects of Drugs, 11th Ed.. Elsevier, Amsterdam, pp. 999–1005.