IMMUNOPATHLOGICAL STUDY ON THE EFFECTS OF VINCIRISTINE SULFATE IN WHITE MICE AND RATS

S.H. Muna¹, Khalil H.Al.Jeboori² & A. A. Ban²
¹College of Vet. Medicine/ University of Baghdad, Iraq.
²College of Medicine/ University of Baghdad, Iraq.

ABSTRACT
Chemotherapy widely distributed in this time in the Veterinary and Human Medical application in order to achieve successful cancer and viral diseases treatment with other medical uses. Vincristine (VCR) considered as member of chemotherapeutic drugs used in treatment most of lymphoid and haemopoitic systems cancers types. The pathological study pointed to study; (Spleen, Lung, Liver, Kidney, Brain, Gastro-Intestinal-Tract, Skin). Organs changes in mice. The immunological study pointed to evaluate the immune state (humoral and cellular immunity) after treatment with Vincristine as alone or accompanied with Specific Antigen (Brucella Vaccine) in mice and rats. So we have to divide the experimental animals in to two main group first one (non immunized group) and second one (immunized group). Results showed that there were pathological changes reported after 2weeks of two different treatment (immunized and non immunized) in all investigated organs. And immunosuppressant effects on ; IgM and INFγ and lymphoid T-cell markers (CD4+ and CD8+) appear also at 2weeks after two different treatments. The Vincristine had non-specific toxic effect so caused in appearance of pathological lesions as well as caused in signs of immunosuppressant’s effects on cellular and humoral immunity.

KEY WORDS: Vincristine, rat, mice, immunity, pathology.

INTRODUCTION
Vincristine therapy induced non-selective cytotoxicity that results in moderate myelosuppression, intestinal disturbances, alopecia, peripheral and rarely central toxicity [1-4]. Although VCR is widely used in small animal clinical oncology several agents have been used in association to decreases its bone marrow cytotoxicity. [5,6] VCR penetrates the blood-brain-barrier poorly, so alternate chemotherapeutic agents may be required for CNS Leukemia. In general the important side effects are:
1. Hepatic Impairment: impairment of hepatic function or jaundice may warrant dosage adjustments, as VCR is metabolized in the liver and excreted in the bile [2,3].
2. Respiratory distress: syndrome has been reported following the administration of VCR up to 2 wk following treatment. The most common adverse reaction is hair loss and the most troublesome reactions are neuromuscular in origin [9].
3. Neuromuscular neurotoxicity: this is the most common dose-limited side effect due to sensory impairment and paraesthesia with further treatment neurotic pain may develop & later motor difficulties. Convulsions, accompanied by hypertension have been reported, ataxia, loss of deep-tendon reflexes, foot drop, cranial nerve palsy paralysis, jaw pain .Pharyngeal pain, parotid gland pain, bone pain, back pain, limb pain, myalgias and numbness of the digits have been observed. Transient cortical blindness and optic atrophy also have been reported together with sympathetic neuropathy. [10,11].
4. Pulmonary: At 1st 2wk of treatment, respiratory distress has been development [12].
5. Hypersensitivity: rash of allergic type reactions, such as anaphylaxis, Rash and edema that are temporally related to VCR therapy. [12].
6. Haematologic disorder: at normal doses reports of leucopenia, anemia & thrombocytopenia are occasionally seen [12].
7. Gastrointestinal disorder constipation and paralytic ileus are not uncommon and are frequently associated with abdominal cramps[12].
8. Urogenital disorder: Hyperuricaemia develops in some patients with non-Hodgkin's lymphomas or leukemia giving VCR, and impair of fertility and embryocidal and teratogenic in mice, rats, hamsters , rabbits and monkeys in very low dosages (0.05mg /kg).Infertility and azoospermia in men as well as amenorrhea in women [13].
9. Dermatological disorder: Alopecia occurring in 20-70% of patients it’s, reversible upon discontinuation of the drug rash and photosensitivity reaction have also been reported [12].
10. Endocrine disorder: Hyper secretion of ADH antidiuretic hormone has been reported after VCR treatment [13].
11. Cardiovascular disorder: Hypotension and hypertension, coronary artery disease, myocardial infarctions have been associated with therapy that included VCR [6].
12. Others: fever, defective seating myoclonic jerks ,abnormal valsalva response weight loss , malaises, dizziness, skin reactions , dyspnea, bronchospasm , impotence , diminished libido. In monkeys, single injection of VCR at a dose of (0.15-0.175) mg/kg on a day 27or 29 of gestation produced one fetus with encephalocle (Skull defect) and one with syndactyly.
Effect of Vincristine sulfate on immune response

VCR is cytotoxic agent that bind to cellular cytoskeleton is microtubules and so cause disruption of mitotic process during cell division lead to blocking cell growth, proliferation, cell division, mostly rapidly dividing cells as lymphocytes [18, 19]. The main feature of VCR effects on rapidly dividing cells are marked leukopenia, erythrocytopenia neurotoxicity [19-21] showed that VCR caused marked releasing of markers (CD4 & CD8) on normal and leukemic T-cells surfaces and described that effects as immune suppressor effects. Also [22] revealed that VCR induced inhibition of INF-gamma release from rodent splenocytes [19] said that VCR exhibit decreased augmentation of primary antibody response i.e. was exhibited an immune depressing effect after enhancing the primary Abs response against any specific Ag inoculation [23] revealed that immunization of mice and rats with proper dose of an Ag stimulus lead to T-cell proliferation and Abs response of circulating lymphocytes and when later exposed to VCR, the immunized mice and rats show immunosuppressant effects and the same effects appeared on the un immunized mice was subjected to VCR. [24, 25] revealed that VCR cause inhibition of release some type of interleukins in mice and rat. Also author [26] showed that VCR treatment in dog with TVT can cause transient lymphopenia after one day of treatment. VCR cause marked inhibition in lymphocyte lympocyte proliferation characterized by suppression of DTH and primary Abs production and inhibition of inflammatory processes and depression of small medium ; large lymphocytes in peripheral Blood cells [26].

MATERIALS & METHODS

Animal grouping and treatments: Mice were divided as following:

1st experimental group (none immunized): were 20 male mice at, this 1st group was subdivided in to 4 subgroup each one contain four mice injected with, (0.1mg/10gmBW) I/P twice weekly at four separated intervals.

2nd experimental group (immunized): 20 male mice were subdividing to 4 subgroup each one contain four mice injected with, (0.1mg/10gmBW) I/P twice weekly at four separated intervals and Ag (0.2 ml/mouse) 2dose S/C.

3rd experimental group: A control group 20 male mice at, this 1st group was subdividing in to 4 subgroup each one contain four mice injected with. 0.1mg/10gmBW I/P twice weekly and Ag (0.2 ml/mouse) 2dose S/C.

Rats were also divided into 3 sub groups

1st experimental group (none immunized): contains 8 male rats subdivided to four subgroup each one contain two rats, injected with VCR (1mg/kg/BW) I/P twice weekly at four separated intervals.

2nd experimental group (immunized): contains 8 male rats subdivided to four subgroup each one contain two rats, injected with VCR (1mg/kg/BW) I/P twice weekly at four separated intervals and Ag (0.8ml/rat) 2 dose S/C.

3rd experimental group: A control group 4 male rats of the same age were not treated unless distilled water.

RESULTS & DISCUSSION

Results of pathological study

The first and second groups of animals showed pathological lesion as showed in tissue sections. Immune tissue showed follicular hyperplasia and haemosedrin (fig.1&2), Liver showed hepatocytes' degenerated changes and necrosis (fig.3&4), Lung showed pneumonia and necrosis (fig.5&6), Kidney showed necrosis (fig.7&8). GIT showed vacuolation and necrosis (fig.9). Brain showed gliosis (fig.10). Skin showed abnormal keratinaization and alopecia (fig.11).

The results of pathological finding in this study, agreed with authors [27-29] Opinions was that the Vincristine is a member of drugs called spindle inhibitors, caused impairment of cellular growth and DNA synthesis processes which lead to mitotic block, that’s responsible for pathological changes. The pathological finding on immune tissues agree with author [30] Who explained that VCR is a cytocidal drug and agreed with authors [33, 34] opinions. The results of general pathological and degenerative changes of Braine after VCR treatment agreed with [30] who pointed that the increased risk of Vincristine neurotoxicity associated with low cyp3 A5 expression genotype in humans' study. And agreed with [31] in animals. The pathological finding of inflammatory infiltration agreed with [32], [33] who explained that VCR treatment induced marked inflammatory infiltration about 9 day after administration. The pathological finding of GIT after VCR treatment in line with [34, 35] who found that rodent treated with VCR induced early signs of GIT inflammation with marked changes in the glandular region. Pathological changes on liver agreed with authors [35, 36] opinions. Kidney changes agreed with [37]. Lung changes agreed with authors [38, 39] opinion in general and with [40] opinion in particular rodent study. Skin changes agreed with [41-44] who said that the most pathological finding induced in animals after 28 hrs to several wks of treatment with VCR.

The results of VCR effects on humoral immunity agreed with [45] who showed that VCR treatment to patient with acute myeloid leukemia , induced rapid immunoglobulin dropped level (IgA , IgM , IgG) and agree with [46] who explained that treatment of VCR in vivo and in vitro in rodent, caused marked inhibition of release of (IgM, INF-γ). As well as agreed with [47] Who showed that VCR injection to rodent at 0.1 mg/kg B.W I/P dose, against specific Ag (Bovine serum albumen) caused inhibition of Ab formation and DTH and he explained that VCR exert it’s immune suppressive effects by inhibiting synthesis of the RNA template(messenger-RNA); DNA synthesis; lipids biosynthesis; cycling nucleotides metabolism; glutathione metabolism; calmodulin dependant Ca+2 transport ATPase, which were important in maintenance of normal immune response. The results of CD4 and CD8 reduction agreed with [48-51], who showed that VCR treatment as a chemotherapeutic agent resulted in early decrease in CD4:CD8 ratio within few hours-day, and revealed that CD4 T-cells dropped from a mean of 588 ±76 / mm3 before chemotherapy to 105 ±28/mm3(p=0.0002) and CD8 T-cells dropped from a mean of 382 ±46/ mm3 to150 ±46/ mm3 during chemotherapy using test of flow cytometry.

Immunopatholgical study on the effects of vincristine sulfate in mice & rats

(weaving of fingers or toes). In rats single injection of VCR at dosage of (0.05-0.075) mg/kg on day 9 of gestation produced highly incidence of eye defects and some microcephaly and neural tube closure defects [16,17].

[1] 3rd experimental group: A control group 4 male rats of the same age were not treated unless distilled water.
FIGURE 1: Spleen from a mouse in the 1st experimental group: showing reactive follicular hyperplasia of red pulp (black arrow) and parafollicular hyperplasia (blue arrow) after 4wk treatment with VCR alone. (H&E X100).

FIGURE 2: A section of cervical lymph node of a mouse in the 2nd experimental group: showing Para follicular hyperplasia of white pulp (black arrow) & haemosedrin depositing (blue arrow) after 4wk until last 8 wk treatment with VCR & Ag. (H&E X100).

FIGURE 3: Liver section taken from a mouse in the 2nd experimental group: showing marked loss of sinusoidal spaces with swelling and vacuolated hepatocytes from hydropic degeneration (black arrow) with congested C.V (red arrow) after 4 wk of treatment with VCR & Ag. (H&E X400).

FIGURE 4: Liver sections taken from a mouse in the 1st experimental group: showing marked loss of sinusoidal spaces with swelling and vacuolated hepatocytes from hydropic degeneration (black arrow) and loss of normal architecture of hepatic tissue, after 6th & 8th wk of treatment with VCR alone. (H&E X400).

FIGURE 5: Lung section taken from a mouse in the 1st experimental group: showing chronic Interstitial Pneumonia represented by inflammatory infiltration (black arrow) with mucofibrinouse exudation within emphysematous alveoli (blue arrow) after 8 wk of treatment with VCR alone. (H&E X400).

FIGURE 6: Lung section taken from a mouse in the 2nd experimental group: showing inflammatory infiltration (black arrow) with extensive necrosis (blue arrow) & haemosedrin deposition (red arrow) after 8 wk of treatment with VCR & Ag. (H&E X400).

FIGURE 7: Kidney section taken from a mouse in the 1st experimental group: showing enlargement of glomeruli size (red arrow) with necrosis of proximal tubules & inflammatory cells (black arrow), after 6 wk of treatment with VCR alone. (H&E X400).

FIGURE 8: Kidney section taken from a mouse in the 2nd experimental group: showing enlargement of glomeruli space (red arrow) with necrosis of proximal tubules (black arrow), after 6 wk of treatment with VCR & Ag. (H&E X400).
Immunopathological study on the effects of vincristine sulfate in mice & rats

FIGURE 9: GIT section taken from a mouse in the 2nd experimental group: showing inflammatory infiltration with hydric degeneration (black arrow) and necrosis (blue arrow) after 8 wk of treatment with VCR and Ag. (H&E.X100).

FIGURE 10: A section of a brain from a mouse in the 2nd experimental group showing: vacuolation with perinuronal edema (arrow) after 6wk of treatment with VCR and Ag. (H&EX400).

FIGURE 11: A section of skin of back, from a mouse in the 2nd experimental group showing: complete loss of hair follicals with parakeratosis, at the end of 6wk of treatment with VCR and Ag.(H&EX100).

Results of immunological study: 1- Humoral immunity

TABLE 1: showed level of (IgM) in mouse serum in 1st and 2nd experiment groups

<table>
<thead>
<tr>
<th>Group- Treatment</th>
<th>IgM mean ± SD (ng/ml)/Mouse</th>
<th>1st exp. group (non immunized) treated with (0.1mg/10gm.b.w) VCR I/P from 2-8 weeks</th>
<th>2nd exp. group (immunized) treated with (0.1mg/10gm.b.w) VCR I/P from 2-8 weeks with Ag treatment (0.2ml/mouse) S/C 2dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td></td>
<td>0.333 ± 0.08 a</td>
<td>0.345 ± 0.10 a</td>
</tr>
<tr>
<td>4 weeks</td>
<td>A</td>
<td>0.201 ± 0.6 a</td>
<td>0.223 ± 0.06 a</td>
</tr>
<tr>
<td>6 weeks</td>
<td>A</td>
<td>0.152 ± 0.02 a</td>
<td>0.155 ± 0.02 a</td>
</tr>
<tr>
<td>8 weeks</td>
<td>A</td>
<td>0.022 ± 0.09 a</td>
<td>0.025 ± 0.07 a</td>
</tr>
<tr>
<td>control</td>
<td></td>
<td>0.383 ± 0.05</td>
<td>0.383 ± 0.05</td>
</tr>
</tbody>
</table>

Small letters denotes that differences significantly between 1st and 2nd subgroups (p <0.001)
Capital letter denotes that significant differences between each time of treatment (p <0.05)

TABLE 2: showed level of mouse (INF-γ) in 1st and 2nd experimental groups

<table>
<thead>
<tr>
<th>Group- Treatment</th>
<th>INF-γ mean ± SD (pg/ml)/Mouse</th>
<th>1st exp. group (non immunized) treated with (0.1mg/10gm.b.w) VCR I/P from 2-8 weeks</th>
<th>2nd exp. group (immunized) treated with (0.1mg/10gm.b.w) VCR I/P from 2-8 weeks with Ag treatment (0.2ml/mouse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td>A</td>
<td>0.458 ± 0.08 a</td>
<td>0.473 ± 0.07 a</td>
</tr>
<tr>
<td>4 weeks</td>
<td>A</td>
<td>0.312 ± 0.05 a</td>
<td>0.322 ± 0.03 a</td>
</tr>
<tr>
<td>6 weeks</td>
<td>A</td>
<td>0.139 ± 0.25 a</td>
<td>0.246 ± 0.14 a</td>
</tr>
<tr>
<td>8 weeks</td>
<td>A</td>
<td>0.077 ± 0.154 a</td>
<td>0.095 ± 0.327 a</td>
</tr>
<tr>
<td>control</td>
<td>A</td>
<td>0.527 ± 0.08</td>
<td>0.527 ± 0.08</td>
</tr>
</tbody>
</table>

Small letters denotes that differences significantly between 1st and 2nd subgroups (p <0.001)
Capital letter denotes that significant differences between each time of treatment (p <0.05)
TABLE 3: CD4 ratio in spleen of rats in 1st experimental group (non immunized)

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment N=2</th>
<th>Score 1% (rats)</th>
<th>Score 2% (rats)</th>
<th>Score 3% (rats)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td></td>
<td>0</td>
<td>50% (1)</td>
<td>50% (1)</td>
</tr>
<tr>
<td>4 weeks</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>6 weeks</td>
<td></td>
<td>100% (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8 weeks</td>
<td></td>
<td>100% (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Control N=4 rats</td>
<td></td>
<td>0</td>
<td>0</td>
<td>100% (4)</td>
</tr>
</tbody>
</table>

Capital letter denotes that significant differences between each time of treatment (p <0.05)

TABLE 4: CD4 ratio in spleen of rats in 2nd experimental group (immunized)

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment N=2</th>
<th>Score 1% (rats)</th>
<th>Score 2% (rats)</th>
<th>Score 3% (rats)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td></td>
<td>50% (1)</td>
<td>50% (1)</td>
<td>0</td>
</tr>
<tr>
<td>4 weeks</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>6 weeks</td>
<td></td>
<td>50% (1)</td>
<td>50% (1)</td>
<td>0</td>
</tr>
<tr>
<td>8 weeks</td>
<td></td>
<td>100% (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Control N=4 rats</td>
<td></td>
<td>0</td>
<td>100% (4)</td>
<td>0</td>
</tr>
</tbody>
</table>

Capital letter denotes that significant differences between each time of treatment (p <0.05)

TABLE 5: CD8 ratio in spleen of rats in 1st experimental group (non immunized)

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment N=2</th>
<th>Score 1% (rats)</th>
<th>Score 2% (rats)</th>
<th>Score 3% (rats)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td></td>
<td>0</td>
<td>100% (2)</td>
<td>0</td>
</tr>
<tr>
<td>4 weeks</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>6 weeks</td>
<td></td>
<td>0</td>
<td>50% (1)</td>
<td>50% (1)</td>
</tr>
<tr>
<td>8 weeks</td>
<td></td>
<td>100% (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Control N=4 rats</td>
<td></td>
<td>0</td>
<td>50% (2)</td>
<td>50% (2)</td>
</tr>
</tbody>
</table>

Capital letter denotes that significant differences between each time of treatment (p <0.05)

TABLE 6: CD8 ratio in spleen of rats in 2nd experimental group (immunized)

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment N=2</th>
<th>Score 1% (rats)</th>
<th>Score 2% (rats)</th>
<th>Score 3% (rats)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td></td>
<td>0</td>
<td>0</td>
<td>100% (2)</td>
</tr>
<tr>
<td>4 weeks</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>6 weeks</td>
<td></td>
<td>0</td>
<td>100% (2)</td>
<td>0</td>
</tr>
<tr>
<td>8 weeks</td>
<td></td>
<td>100% (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Control N=4 rats</td>
<td></td>
<td>0</td>
<td>50% (2)</td>
<td>50% (2)</td>
</tr>
</tbody>
</table>

Capital letter denotes that significant differences between each time of treatment (p <0.05)

Results of Microscopically Apperances of CD4\(^+\) and CD8\(^+\): In 1st and 2nd experimental groups of rats picture of CD4\(^+\) and CD8\(^+\) appear as small dark brown dot on lymphocytes (Fig 12 & 13).

FIGURE 12A: section in a spleen from a rat in the 1st experimental group after 2 wk of treatment with VCR alone: showing CD4\(^+\) &CD8\(^+\) marker as small dot on lymphocytes (arrow). (Oil.X1000)

FIGURE 13 A: section in a spleen from a rat in the 2nd experimental group after 2 wk of treatment with VCR &Ag: showing CD4\(^+\)&CD8\(^+\) marker as small dot on lymphocytes (arrow). (Oil.X1000).
REFERENCES

[15]. Tiejuncheng, Qingliang Li, Yanli Wang, and Stephen H. Bryant (2011) Drugs Chemical information and modeling. 51 (9):2440- 2448.

bone marrow cells and other organs in Patients with multiples myeloma: a cytomorphologic study. Tumori. J.12 (1)43-56.

