

INTERNATIONAL JOURNAL OF ADVANCED BIOLOGICAL RESEARCH

© 2004 - 2012 Society for Science and Nature (SFSN). All rights reserved

www.scienceandnature.org

CHARACTERIZATION OF BUNIUM PERSICUM ACCESSIONS TO SALT STRESS

SAFARNEJAD, Abbas

Razavi-Khorasan Agriculture and Natural Resources Research Center. P.O. Box: 91735/1148, Mashhad, Iran.

ABSTRACT

Salinity is an increasing problem in the world. Study of the salinity tolerance in medicinal plants is very important in cultivating them in saline lands. A complete random design experiment was carried out in order to study the effect of salinity stress on *Bunium persicum* plants in hydroponic environment with four replications in germination stage and three in seedling stage. The genotypes of *Bunium persicum* were from Jangal–Khageh Kalat, Sirzad Kalat, Semnan, Alamut Ghazvin, Chalmir Dargaz, Bagheran Birjand, Babaaman Bojnord, Kerman, Shiraz, Ferizi Chenaran, Yazd and Markazi province. Salinity levels include control (zero concentration), 50, 100, 150 and 200 mM NaCl. The results showed significant reduction in germination rate, germination percentage, shoot length, root length, vigority, shoot dry weight, root dry weight, total biomass and shoot/root ratio with increasing salinity in *Bunium persicum* genotypes compared with the control. A significant difference was observed between *Bunium persicum* genotypes. Anyway, *Bunium persicum* genotypes showed more tolerance in germination stage than seedling stage. In different genotypes Sirzad Kalat showed the lowest reduction and Alamut Ghazvin showed more reduction compared with the control in germination stage. In the seedling stage Yazd genotype showed the lowest reduction and Markazi province genotype showed more tolerance to salt stress.

KEY WORDS: Salinity, hydroponic, NaCl, Bunium persicum.

INTRODUCTION

Salinity is main factor to limit plant geographical dispersion and effect on vegetative or reproductive quality of plants (Kumar et al., 2004). Nowadays using of medicinal plants has developed between people (Osaski et al., 2002). Furthermore because of weather condition in Iran, agricultural lands include salty soil. Recent studies showed that 15% of total arable area are salt (Karimi and Shekari, 1996 and Postini and Zahtab Salmani, 1997). So it is important for study and investigation of salinity tolerance of medicinal plants and production of salt tolerant plants. Measuring of morphological index such as growth rate of shoots and roots is a good index for evaluation salinity tolerance (Shalhevet, 1993 and Munns et al., 1982). Plants can divide into two groups: resistant and sensitive to salinity, and salty water might be used for resistant's plants irrigation (Francois et al., 1986). One of the effective factor on salinity tolerance is protective of swelling cell that plant can resist of growth decreasing. One method for protecting swelling cell is osmotic regulation with absorption of salty ions and production of organic materials (Safarnejad et al., 1996). Under salinity stress some elements disrupts absorption of others. Under salinity stress P and N limit plant growth (Gorham, 1996, Shalhevet, 1993 and Shannon, 1986). It is due to competition between elements because of disrupting adjustment of ion translocation (Niu et al., 1995). Plant response to salinity stress is different because of growth stage, development and plant age (Kerepsi and Galiba, 2000). So it is important to select salt tolerant plants for high yield and inhibiting of growth reduction (Munns et al., 1982 and Shannon, 1986). In hydroponic method, plants provide nutrients from solution directly. Furthermore nutrients and elements can be controlled (Lahoti and Rahimzadeh, 1995). In hydroponic condition, effects on different stress salinity, drought and nutrient shortage could be studied. *Bunium persicum* is from Umbelliferae family. It is a perennial shrub, without trichome and standing. Roots are gland form and levees are alternative (Rashed Mohasel, 1992). This plant has dormancy and germinates late (Castillo and Jordan, 1997). In this research, effect of salinity stress on germination and seedling stages of different genotypes of *Bunium persicum* with hydroponic method was studied.

MATERIALS AND METHODS

In this research, in order to investigate the effect of salinity stress on Bunium persicum plants, the changes that rising from salinity was studied in germination and seedling stages. A complete random design experiment was carried out with four replications in germination stage and three in seedling stage. The genotypes of Bunium persicum were from Jangal-Khageh Kalat, Sirzad Kalat, Semnan, Alamut Ghazvin, Chalmir Dargaz, Bagheran Birjand, Babaaman Bojnord, Kerman, Shiraz, Ferizi Chenaran, Yazd and Markazi province. Because of shortage seeds of Markazi province and Ferizi Chenaran, Markazi province genotype studied in seedling stage and Ferizi Chenaran genotype studied in germination stage. Salinity levels include control (zero concentration, 50, 100, 150 and 200 mM NaCl in germination stage and control, 50, 100 and 150 mM NaCl in seedling stage. In order to break seed dormancy, seeds placed in refrigerator for two months. For sterilization, 1.5 % HOCl₂ for 3 min, sterile distilled water

and binomial for 2 min were used. Finally seeds were rinsed with sterile distilled water and then were sown in glasses that were sterilized with HOCl₂. Hewit solution with NaCl concentrations were poured in to 300 cm³ glasses and 20 seeds sown in each glass (Fig 1). Every glass was as a replication. Then glasses transferred to growth room at $25\pm2^{C\circ}$ and florescent light with a 16- h photoperiod (Akhondi *et al.*, 2004). After 14 days, different traits such as, germination percentage, length shoot, length root, vigority, shoot and root fresh weight, shoot and root dry weight, total biomass and shoot/root ratio were measured. For dry weight, fresh samples placed in oven at 80 °^C for 48 hours. Below formula were used for germination percentage and biomass:

 $PG = N_i / N \times 100$

 $PG \rightarrow germination percentage$

 $N_i \rightarrow$ germination seeds until ith day

 $N \rightarrow \text{total seed}$

Biomass = root dry weight + shoot dry weight

Vigority was determined according to Anderson and Abdul-Baki method using below formula:

Vigority = [germination percentage \times mean of length seedling (mm)] / 100

In seedling stage, in order to provide seedling, some seeds of each genotype were sown on beeds in glasses filled with Hewit solution without NaCl and after 14 days transferred to hydroponic with different salty level (Akhondi *et al.*, 2004). In order to adoption, seedling transferred to glass without NaCl for 48 hours. Then transferred to glasses with 0, 50, 100 and 150 mM NaCl (Fig 2). After 2 weeks root and shoot length, root and shoot fresh weights were measured (Fig 3). Shoot and root length were measured by 0.1 mmd ruler and fresh weight measured by 0.0001 gr digital scale.

Statistical analysis for each variable using SAS software. Means were compared by duncan's multiple range test at $p \le 0.05$.

RESULTS

Effect of salinity stress on germination stage:

Results showed significant differences between Bunium persicum genotypes in germination percentage at 1% level (Table 1). Increasing salinity, reduced germination percentage in genotypes. Reduction of germination percentage of Jangal -khageh Kalat, Sirzad Kalat, Chalmir Dargaz, Bagheran Birjand, Babaaman Bojnord, Kerman and Yazd was 96.05, 82.5, 88.75, 87.19, 93.83, 98.25 and 94.46% respectively. This reduction was 100% in other genotypes. ANOVA showed significant differences between Bunium persicum genotypes in all of traits at 1% level in germination stage (Table 1). With increasing NaCl in germination stage, root length, shoot length, vigority, dry and fresh weight, shoot/root ratio and biomass reduced (Tab. 3). Root length reduction of Jangal-Khageh Kalat, Sirzad Kalat, Chalmir Dargaz, Bagheran Birjand, Babaaman Bojnord, Kerman and Yazd was 95.01, 88.61, 81.94, 70, 88.89, 92.54 and 97.17% respectively in 200 mM NaCl (Table 3). Reduction of shoot length in Jangal-Khageh Kalat, Sirzad Kalat, Chalmir Dargaz, Bagheran Birjand, Babaaman Bojnord, Kerman and Yazd was 93.69, 87.23, 87.68, 88.13, 93.31, 92.79 and 96.65% respectively in 200 mM NaCl compared with the control in germination stage (Table 3). Reduction of vigority in Jangal -Khageh Kalat, Sirzad Kalat, Chalmir Dargaz, Bagheran Birjand, Babaaman Bojnord, Kerman and Yazd was 99.59, 97.96, 98.46, 97.5, 98.98, 99.5 and 99.32% respectively in 200 mM NaCl compared with the control (Table 3). In germination stage the highest root fresh weight (7.54 mg/p) was observed on control in Kerman genotype and the lowest root fresh weight (zero) was observed on 200 mM NaCl in Semnan, Alamut Ghazvin, Shiraz and Ferizi Chenaran (Table 3). In germination stage the highest root dry weight (0.51 mg/p) was observed on control in Chalmir Dargaz genotype and the lowest root dry weight (zero) was observed on 200 mM NaCl in Semnan, Alamut Ghazvin, Shiraz and Ferizi Chenaran (Table 3). In germination stage the highest shoot fresh weight (17.28 mg/p) was observed on control in Chalmir Dargaz genotype and the lowest shoot fresh weight was observed on 200 mM NaCl in Semnan, Alamut Ghazvin, Shiraz and Ferizi Chenaran (Table 3).

In germination stage increasing salinity reduced shoot dry weight. Reduction of shoot dry weight in Jangal–Khageh Kalat, Sirzad Kalat, Chalmir Dargaz, Bagheran Birjand, Babaaman Bojnord, Kerman and Yazd was 80.92, 79.19, 74.87, 76.35, 91.38, 89.21 and 91.23% respectively in 200 mM NaCl compared with the control (Table 3).

In germination stage increasing salinity reduced shoots / root ratio. This reduction in Chalmir Dargaz was 30.43 in 200 mM NaCl compared with the control (Table 3).

In germination stage reduction of total biomass in Jangal – Khageh Kalat, Sirzad Kalat, Chalmir Dargaz, Bagheran Birjand, Babaaman Bojnord, Kerman and Yazd was 84.08, 75.66, 68.49, 76.06, 87.33, 89.01 and 90.44% respectively in 200 mM NaCl compared with the control (Table 3).

Effect of salinity stress on seedling stage:

ANOVA showed significant differences between *Bunium persicum* genotypes in all of traits at 1% level in seedling stage (Table 2). Increasing salinity, reduced root length, shoot length, root and shoot fresh weight (Table 4).

Reduction of root length in Jangal–Khageh Kalat, Sirzad Kalat, Semnan, Alamut Ghazvin, Bagheran Birjand, Babaaman Bojnord, Kerman, Shiraz and Yazd was 79.72, 65.9, 45.74, 63.33, 65.24, 55.85, 52.5, 75.28 and 21.75 % respectively in 150 mM NaCl compared with the control in seedling stage (Table 4). This reduction in Chalmir Dargaz and Markazi province was 100% (Table 4).

Reduction of shoot length in Jangal–Khageh Kalat, Sirzad Kalat, Semnan, Alamut Ghazvin, Bagheran Birjand, Babaaman Bojnord, Kerman, Shiraz and Yazd was 79.12, 13.3, 30.3, 39.33, 41.14, 35.35, 27.97, 71.91and 49.92 % respectively in 150 mM NaCl compared with the control in seedling stage(Table 4). In seedling stage the lowest root fresh weight (zero) was observed on 150 mM NaCl in Chalmir Dargaz and Markazi province (Table 4). In seedling stage the highest shoot fresh weight (42.71 mg/p) was observed on control in Babaaman Bojnord and the lowest shoot fresh weight (zero) was observed on 150 mM NaCl in Chalmir Dargaz and Markazi province genotype (Table 4).

Error 165 83.986	Accesion* 40 216.49** salinity	Salinity 4 35097.878**	Accesion 10 1424.065**	Treatment 54 3023.922**	S.O.V Germination (%)
6 0.094	* 0.115 ns	* 15.689**	* 0.625**	* 1.363**	1 Biomas (mg/pla nt)
3.147	6.169**	18.966**	12.302**	8.253**	Shoot/Ro ot ratio
0.046	0.049 ns	9.849**	0.357**	0.832**	Shoot Dry Weight (mg/plant)
3.454	4.008 ns	1196.993**	41.057**	99.238**	Shoot/Ro Shoot Dry Shoot Fresh ot Weight Weight ratio (mg/plant) (mg/plant)
0.013	0.023**	0.743**	0.063**	0.084**	Root Dry Weight (mg/plant)
1.315	2.435**	196.359**	9.073**	18.029**	Root Fresh Weight (mg/plant)
77.364	673.211**	73651.608**	1967.583**	6318.716**	Vigority
34.726	76.189**	23427.574**		1882.834**	Shoot Length (mm)
39.654	137.094**	11713.137**	505.221**	1062.75**	Root Length (mm)

	TABLE I. V	
	'ariance ana	•
	alvsis	
	of Int	
	teraction	
	betwee	
	n salt	
	stress a	-
	and 8	-
	accessions	
	01 B	5
	a wnnwn	•
	persicum	
	for	2
C	growth	
	chara	
	cters a	-
	it germination	•
	1 stage *	

TABLE 2. Variance analysis of interaction between salt stress and 8 accessions of Bunium persicum for growth characters at seedling stage

S.O.V	DF	Shoot Fresh Weight (mg/plant)	Root Fresh Weight (mg/plant)	Shoot Length (mm)	Root Length (mm)
Treatment	4ω	356.028**	342.879**	1294.125**	7061.544**
Accession	0 1	594.267**	1123.824**	1520.412**	9755.847**
Salinity	ω	2462.745**	665.29**	10069.594**	55420.195**
Accession*salini ty	0ω	65.942 ns	50.324 ns	341.15 ns	1327.579 ns
Error	∞ ∞	53.089	48.469	245.875	880.028

n.s, non significant & **, significant in $\alpha = \%1$

Ala (Gha	mut zvin					emn	ersici an			Sirz (Ka	zad	San	suc		ngal (Ka	Kha alat)	jeh		Accession
100 150 200	100	50	0	200	150	100	50	0	200	150	100	50	0	200	150	100	50	0	NaCI Conc. (mM)
rs 0.43stuvw 0w	0.91ijklmnopq	1.10ghijklm	1.64bcdef	$0 \mathrm{w}$	0.66mnopqrstu v	0.50qrstuvw	0.91ijklmnopq rs	1.70bcde	0.46rstuvw	0.55pqrstuv	1.08ghijklmno	1.23efghijk	1.89bc	0.32tuvw	0.55opqrstuv	1.09ghijklmn	1.38cdefghij	2.01ab	Biomas (mg/plant)
2عور من المراجع 1.806defghi 0i	2.00 tourorgin	2.854bcdefghi	3.940bcde	0i	2.027defghi	2.165defghi	3.427bcdefgh	4.031bcde	5.375abc	2.490cdefghi	1.910defghi	2.370cdefghi	3.716bcdef	3.750bcdef	1.5defghi	1.930defghi	2.277cdefghi	3.205bcdefgh	Shoot/Root ratio
0.000rgmjki 0.291mnop 0p	0 65efahiiki	0.82defghi	1.31bc	d_0	0.48ijklmn	0.35klmnop	0.69efghijk	1.36bc	0.311mnop	0.39jklmno	0.69efghijk	0.86defgh	1.49bc	0.291mnop	0.41jklmno	0.72efghijk	0.96de	1.52b	Shoot Dry Weight (mg/plant)
2.25qrstuv 0v	5 00il/Imnon	8.71hij	13.20cdefg	0v	3.89nopqrs	3.35pqrstu	7.23ijklm	14.38cde	2.97pqrstuv	2.76qrstuv	6.75jklmn	10.21ghi	15.07bcd	1.45stuv	2.64qrstuv	7.90ijk	10.25ghi	15.68abc	Weight (mg/plant)
0.2 ouerginijkini 0.14jklmno 0o	0.26defahiiklm	0.29cdefghijklm	0.34abcdefghijk	00	0.19ghijklmno	0.15ijklmno	0.21 fghijklmn	0.34abcdefghij	0.15ijklmno	0.16hijklmno	0.39abcdefg	0.37abcdefg	0.40abcdef	0.04no	0.14klmno	0.38abcdefg	0.42abcde	0.48abc	Weight (mg/plant)
2.731Jx11110 1.531mnopqr 0r	2 73iiklmno	3.66defghijk	4.13defghi	0r	0.66pqr	1.28nopqr	2.27ijklmnopq	4.92cdefgh	0.760pqr	2.11jklmnopq	3.91defghij	5.14bcdefg	5.56bcd	0.36qr	1.30nopqr	4.19defghi	4.89cdefgh	6.53abc	Weight (mg/plant)
11.000JA1 1.131 01	11 88::14	49.90f	105.56c	01	1.521	3.631	20.46hijk	110.56bc	2.551	4.461	14.38ijkl	66.93e	125a	0.531	0.961	13.94ijkl	45.60f	128.09a	Vigority
22kuluu 6.1rstuv 0v	2.26 Jun	32ghij	64.7abc	0v	9.3pqrstuv	9.6pqrstuv	25.5ijk	67.7ab	8.9pqrstuv	12.3nopqrst	24.4ijkl	40.4fg	69.7a	4.1stuv	7.9qrstuv	23.1jklm	33.8ghi	65abc	Shoot length (mm)
4.8stuv 0v	14 Innore	29.9hijklm	44.9cde	0v	4.6stuv	8rstuv	15.8nopqr	48bcd	6.3rstuv	14opqrs	21.6mno	39.2defgh	55.3b	3.3stuv	6.4rstuv	221mno	36.6efghi	66.2a	Root Length (mm)
5.20pqrst 0t	37 50hiiklm	80.50de	96.25abc	Ot	9.20opqrst	14.48mnopqr	46.05ghi	95abc	17.50jklmnop	18.75jklmno	33.75hijkl	83.75de	100a	3.85qrst	3.85qrst	30.78hijklm	65.38efg	97.50abc	Germination (%)

TABLE 3. Mean comparison of interaction between salt stress and 8 accessions of Bunium persicum for growth characters at germination stage *

	Ker	man			I		Ama nord				Bag (Bir	herai jand)	1)				ılmir rgaz))		Accession
200	150	100	50	0	200	150	100	50	0	200	150	100	50	0	200	150	100	50	0	NaCl Conc. (mM)
0.20uvw	0.60mnopqrstu v	0.93ijklmnopqr s	1.09ghijklmn	1.82bcd	0.19uvw	0.57nopqrstuv	0.66lmnopqrst uv	0.86jklmnopqr s	1.50bcdefgh	0.45rstuvw	0.66mnopqrstu v	0.97ijklmnopqr	1.19fghijkl	1.88bc	0.75klmnopqrs t	0.96ijklmnopqr s	1.05hijklmnop	1.33defghij	2.38a	Biomas (mg/plant)
0.750fghi	6.937a	3.785bcdef	2.505cdefghi	3.233bcdefgh	0.521ghi	1.292 efghi	2.547cdefghi	2.175defghi	3.373bcdefgh	4.650abcd	5.840ab	2.802bcdefghi	3.397bcdefgh	3.684bcdefg	2.540cdefghi	1.459efghi	1.970defghi	2.642cdefghi	3.651bcdefgh	Shoot/Root ratio
0.15mnop	0.51hijklm	0.71efghijk	0.82defghi	1.39bc	0.10op	0.31 lmnop	0.46ijklmno	0.59 fghijkl	1.16cd	0.35klmnop	0.52hijklm	0.71efghijk	0.92def	1.48bc	0.47ijklmno	0.57fghijkl	0.70efghijk	0.96de	1.87a	Shoot Dry Weigh (mg/plant)
0.30uv	3.17pqrstuv	5.12klmnopq	7.70ijkl	12.86cdefg	0.25uv	1.51rstuv	4.33 mnopqrs	6.53jklmno	12.55defg	3.01pqrstuv	4.97klmnopq	6.83jklmn	11.07fgh	17.97a	3.47opqrst	4.28mnopqrs	7.11jklm	11.17fgh	17.28ab	Shoot Fresh Weight (mg/plant)
0.05no	0.09mno	0.22efghijklmn	0.26defghijklm	0.43abcd	0.09mno	0.26defghijklm	0.20fghijklmn	0.27defghijklm	0.35abcdefghi	0.10mno	0.14jklmno	0.26defghijklm	0.28defghijklm	0.40abcdef	0.28defghijklm	0.39abcdefg	0.36abcdefgh	0.37abcdefg	0.51 ab	NaClBiomasShoot/RootShoot DryShoot DryRoot DryRoot FreshShootRootRootConc.(mg/plant)(mg/plant)WeightWeightWeightWeightUgorityLength(mg/plant)(mM)(mg/plant)(mg/plant)(mg/plant)(mg/plant)(mg/plant)(mg/plant)(mg/plant)
0.10r	1.71klmnopqr	3.06hijklmn	4.87cdefgh	7.54a	0.47qr	0.60pqr	1.82klmnopqr	3.19ghijklmn	4.91cdefgh	1.511mnopqr	1.44mnopqr	3hijklmn	3.46efghijkl	6.82ab	1.491mnopqr	2.58ijklmnop	3.38efghijklm	5.25bcde	7.01ab	Root Fresh Weight (mg/plant)
0.371	3.311	6.91kl	24.24hij	74de	0.751	1.891	10.65jkl	26.18ghi	73.46de	2.911	5.681	13.39ijkl	45.79f	116.27abc	1.881	2.991	21.86hij	70.85e	122.09ab	Vigority
3.8tuv	12.8nopqrst	17.2klmnopq	27.1hijk	52.7de	3.6tuv	7.3qrstuv	14.71mnopqr	25ijk	53.8d	8.7pqrstuv	11.20pqrstu	18.7klmnop	35.7gh	73.3a	8.7pqrstuv	17.3klmnopq	23.3jklm	44.9ef	70.6a	Shoot length (mm)
2.5uv	10.1pqrstuv	14opqrs	24.9klmn	33.5fghijk	3.1 tuv	5stuv	12.5 opqrstu	22.6mnopq	27.9ijklm	13.3opqrst	7.4rstuv	19.4mnopq	25.3jklmn	44.5cde	9.3 qrstuv	13.9opqrs	21mno	35.4efghij	51.5bc	Root Length (mm)
1.48st	13.23klmnopq	20.58jklmno	35.28ijklmn	85cd	5.55pqrst	13.90klmnopq	37.50hij	55.58fgh	90cd	12.65lmnopqr 69	29.10ijklmn	34.18hijkl	74.68def	98.75 ab	11.25mnopqr	11.25mnopqr	48.75ghi	87.5 cd	100a	Germination (%)

609

Accession	NaCl Conc. (mM) 0 50	Biomas (mg/plant) 1.71bcde 1hijklmnopq	Shoot/Root ratio 3.339bcdefgh 2.469cdefghi	Shoot Dry Weight (mg/plant) 1.32bc 0.70efghijk	Shoot Fresh Weight (mg/plant) 13.59cdef 7.78ijkl	Fresh ght lant) ydef	Fresh Root Dry ght Weight lant) (mg/plant) cdef 0.39abcdef		Root Dry Weight (mg/plant) 0.39abcdef 0.30cdefghijkl	Root Dry Root Fresh Shoot length Weight Weight Vigority (mm) (mg/plant) (mg/plant) 5.31bcde 84.75d 57.3cd 0.39abcdef 5.27fghijklmn 24.29hij 27hijk	Root Dry Root Fresh Weight Weight Vigority (mg/plant) (mg/plant) 0.39abcdef 5.31bcde 84.75d 0.30cdefghijkl 3.27fghijklmn 24.29hij
	150	1.42cdefghi	1.946defghi 0.982_fahi	0.89defg	4.96klmnopq		0.53a		4.73cdefgh	4.73cdefgh 6.91kl 2	4.73cdefgh 6.91kl 20.5klmno 3
	150 200	0.47qrstuvw 0 w	0.982efghi 0 i	0.31 lmnop 0 p	2.56qrstuv 0 v		0.16hijklmno 0 o	0.16hijklmno 0.95opqr 0 o 0 r		0.95opqr 0 r	0.95 opqr 3.701 0 r 01
	0	1.85bc	3.317bcdefgh	1.42bc	13.73cdef		0.43abcd	0.43abcd 5.16bcdef		5.16bcdef	5.16bcdef 103.91c
	50	0.76klmnopqrst	2.485cdefghi	0.54ghijkl	4.33mnopqrs	S.	s 0.22efghijklmn		0.22efghijklmn	0.22efghijklmn 2.12jklmnopq	0.22efghijklmn 2.12jklmnopq 29.39gh
	100	0.49qrstuvw	2.779bcdefghi	0.36klmnop	3.40opqrstu		0.131mno	0.13lmno 1.70klmnopqr		1.70klmnopqr	1.70klmnopqr 13.15ijkl
	150	0.681mnopqrstu v	1.176efghi	0.36klmnop	3.63 opqrs		0.32bcdefghijkl	0.32bcdefghijkl 2.69ijklmno		2.69ijklmno	2.69ijklmno 3.881
	200	0 w	0 i	d 0	0 v		0 0	0 o 0 r		0 r	0 r 01
	0	1.57bcdefg	2.606cdefghi	1.14cd	11.61efgh		0.44abcd	0.44abcd 6.88ab		6.88ab	6.88ab 38.35fg
	50	1.12ghijklm	2.194defghi	0.74efghij	7.79ijkl		0.38abcdefg	0.38abcdefg 46.3efghijkl		46.3efghijkl	46.3efghijkl 14.81 ijkl
zd	100	0.701mnopqrstu	0.715fghi	0.36klmnop	4.671mnopqr		0.34abcdefghi	0.34abcdefghi 1.50lmnopqr		1.50lmnopqr	1.50lmnopqr 3.731
Ya	150	0.18uvw	1.250efghi	0.13nop	0.55tuv		0.05no	0.05no 0.55qr		0.55qr	0.55qr 0.501
	200	0.15vw	0.500hi	0.10op	0.20v		0.05no		0.05no 0.08r 0.261	•	0.08r 0.261

TABLE 3 (continue). Mean comparison of interaction between salt stress and 8 accessions of Bunium persicum for growth characters at germination stage*

(α =%1) There is no significant different between number with the same world in each column*

Bunium persicum accessions to salt stress

		Ĩ	let stage		
Accession	NaCl Conc.	Shoot Fresh Weight	Root Fresh Weight	Shoot Length	Root Length
	(mM)	(mg/plant)	(mg/plant)	(mm)	(mm)
Jangal- Khajeh (Kalat)	0	31.84abcdefgh	18.03efghijklmn	77.6abc	163.7abc
ng haj (al	50	25.99cdefghijkl	14.46hijklmno	73.2abcd	136.9abcdef
Ja (K Z	100	24.45defghijklm	16.86fghijklmno	71.5abcd	111.5cdefghij
	150	3.06qr	3.93op	16.2gh	33.2no
Sirzad (Kalat)	0	31.03abcdefghi	17.32fghijklmno	77.4abc	187.4a
irz (al	50	25.90cdefghijkl	16.89fghijklmno	68.3abcd	136.2abcdef
\mathbf{S}	100	26.17cdefghijkl	13.72hijklmnop	70.8 abcd	95.1efghijklm
	150	21.66efghijklm	8.82jklmnop	67.1 abcd	63.9ijklmn
Semnan	0	25.92cdefghijkl	19.17efghijklm	70.3 abcd	138.6abcdef
nn	50	21.62efghijklm	20.57defghijkl	66.4 abcd	129.7abcdefgh
Sei	100	22.38efghijklm	20.20defghijkl	63.1 abcd	123bcdefgh
	150	16.03jklmnopq	11.99ijklmnop	49cdef	75.2ghijklmn
Alamut hazvin)	0	29.32abcdefghij	18.87efghijklmn	72.2abcd	151.1abcde
zv	50	20.99efghijklm	17.40fghijklmno	64.7abcd	144.6abcde
Al	100	17.62hijklmnop	17.80fghijklmno	60.5abcde	116.3cdefghi
<u>(</u>	150	10.93mnopqr	8.10klmnop	43.8def	55.4 jklmno
nir uz)	0	28.17bcdefghijk	17.51fghijklmno	72.5abcd	133.3 abcdefg
aln rga	50	24.21 efghijklm	15.60ghijkllmno	72.1abcd	107.5 cdefghijk
Chalmir Alamut (Dargaz) (Ghazvin)	100	18.05 ghijklmnop	13.73 hijklmnop	66.2abcd	102.6 defghijkl
	150	0 r	0 p	0 h	0 o
an d)	0	38.86abcd	26.82bcdefgh	82.4ab	161.7abcd
3agheran (Birjand)	50	27.07bcdefghijkl	25.24bcdefgh	72.1abcd	141.1abcdef
agł Birj	100	35.24acde	21.01defghijk	82.5ab	85.1 fghijklmn
—	150	18.83fghijklmno	11.17jklmnop	48.5cdef	56.2jklmno
ba (d)	0	42.71a	33.17abcd	89.1a	164.9abc
Ba	50	40.67ab	42.64a	78.2abc	175.9ab
Baba Aman (Bojnord)	100	26.11cdefghijkl	38.28ab	74.1abcd	107.6cdefghijk
Ъ,	150	17.61hijklmnop	31.67abcde	57.6abcde	72.8hijklmn

TABLE 4. Mean comparison of interaction between salt stress and 8 accessions of <i>Bunium persicum</i> for growth characters at
plantlet stage

($\alpha = \%1$) There is no significant different between number with the same world in each column*

TABLE 4 (continue). Mean comparison of interaction between salt stress and 8 accessions of *Bunium persicum* for growth characters at plantlet stage

Accession	NaCl Conc. (mM)	Shoot Fresh Weight (mg/plant)	Root Fresh Weight (mg/plant)	Shoot Length (mm)	Root Length (mm)
	0	33.47 abcdef	28.67bcdefg	75.8 abcd	160abcd
с	50	29.97 abcdefghij	22.72cdefghij	73.8 abcd	129.5abcdefgh
erman	100	29.16 abcdefghij	29.58abcdef	73 abcd	124.7bcdefgh
ent	150	13.30 lmnopqr	29.56abcdef	54.6bcde	76ghijklmn
	0	40.26 abc	35.58abc	89a	179.1ab
	50	32.67 abcdefg	31.63abcde	80.2abc	156.7abcd
Shiraz	100	26.01 cdefghijkl	37.74ab	73abcd	139.9abcdef
, hi	150	6.67 opqr	14hijklmno	25fgh	43.3mno
	0	21.37 efghijklmn	6.97klmnop	51.8bcdef	62.7ijklmn
ູ່ຊ	50	16.98 ijklmnopq	8.74jklkmnop	48.2cdef	61.2ijklmn
Center ovince	100	6 opqr	5.14mnop	45.1def	54.3jklmno
ov	150	0 r	0 p	0 h	0 o
	0	15.71 jklmnopq	4.21nop	61.1abcd	63.5ijklmn
	50	7.20 nopqr	6.24lmnop	52.3bcdef	46.91mno
pz	100	14.27 klmnopq	12.29ijklmnop	62.7abcd	83.1 fghijklm
Ya	150	4.44 pqr	7klmnop	30.6efg	49.8klmno

($\alpha = \%1$) There is no significant different between number with the same world in each column*

DISCUSSION AND CONCLUSION

With increasing salinity, the germination percentage decreased in all of genotypes. Salami *et al.* (2006), showed that increasing salinity decreased germination percentage and growth in *Valeriana Officinalis* and *Cuminum Cyminum*. Tarzi (1995) reported that increasing salinity caused reduction in germination percentage in *Cuminum Cyminum*. The research showed that increasing salinity caused increasing absorption of Na, K, P and reduction absorption of N and it is because of reduction of germination percentage. Low germination in salty area is related to the reduction of absorbtion due to disordering of osmotic equilibrium and ionic poisonousness that conformed with Safarnejad *et al.* (1996), Penles *et al.* (1997) and Shaloot (1993).

Increasing salinity concentration caused reduction in root length in germination and seedling stage. Shoot length decreased by increasing salinity concentration. Reduction of shoot growth caused damaging to final yield (Shannon, 1986). Some studies showed reduction of wheat growth and reduction of wheat and barely shoot length (Pessaraki *et al.*, 1991, Penules *et al.*, 1997 and Postini and Zahtab Salmani, 1997).

Disorder in growth and death of plants under salinity stress might be due to reduction or death of photosynthesis level (Shannon, 1986 and Postini, 1994). There was converse relation between root dry and fresh weight and increasing NaCl concentration in all Bunium persicum genotypes. It might be due to disordering of ionic and osmotic equilibrium and root is the first organ that is exposed to stress (Penules et al., 1997 and Shannon, 1986). Increasing NaCl concentration from control to 200 mM caused reduction of shoot fresh and dry weight in all genotypes in seedling stage. Increasing of harmful elements caused disordering in metabolically and biological activity in plants and finally caused death and reduction of shoot (Gorham, 1996). Salinity stress from high concentration of NaCl caused disordering of osmotic equilibrium and swelling of cell (Gorham, 1996 and Penules et al., 1997). Also shoot weight reduction is due to alter using of energy for organic material that influences on osmotic equilibrium. Nabizadeh (2003) reported that salinity had negative effect on yield of Cuminum Cyminum. Shoot / root ratio decreased by increasing salinity in different genotypes of Bunium persicum. Reduction of Shoot / root ratio showed that shoot is more sensitive than root to increasing of NaCl concentration. It might be due to root resistance to salinity stress with corking of epidermis and salt accumulation in root cortex (Chipa and Lal, 1995). In other hand leaves falling for salt control reduce shoot / root ratio (Gorham, 1996). Furthermore water stress can reduce number of leaves in plants. So reduction and death of leaves cause reduction of shoot / root ratio under salinity stress (Postini, 1994). Tatal biomass in Bunium persicum decreased by increasing of NaCl concentration in germination stage (Tab. 3). Reduction of photosynthesis level and using energy due to control of salinity stress and increasing of ionic and osmotic equilibrium, so it causes reduction of dry yield in many

plants such as *Nigalla sativa* (Safarnejad *et al.*, 1386), *Ferula assafoetida* (Mohamad Dost Shiri, *et al.*, 1388), *Foeniculum vulgare* (Safarnejad and Hamidi, 2008), fleawort (Safarnejad *et al.*, 1386), *Cuminum Cyminum*.(Salami *et al.*, 1384), wheat and barely (Kerepesi and Galiba, 2000).

Results indicated significant differences between Bunium persicum genotypes under salinity stress. Reduction of growth indexes caused by salinity stress and this reduction was different between genotypes. Genotypes of Sirzad Kalat, Chalmir Dargaz, Bagheran Birjand and Babaaman Bojnord showed lowest reduction in germination stage and showed more tolerance to stress. In germination stage, Sirzad Kalat showed the lowest reduction in germination percentage and shoot length under salinity stress so it is as a resistance genotype to salinity. Alamut Ghazvin was more sensitive than the others in germination stage. In the seedling stage Yazd genotype showed the lowest reduction and Markazi province genotype showed more reduction compared with the control. Finally results indicated that in the germination and seedling stages Babaaman of Bojnord genotype showed more tolerance to salt stress.

REFERENCES

Akhoundi, M., Safarnejad, A. and Lahouti M. (2004) Evaluation of morphological and selection of tolerant genotypes in alfalfa (*medicago sativa l.*) in response to osmotic stress. Pajouhesh-Va-Sazandegi. 17(62 in agronomy and horticulture):50-57.

Postini, K. (1994) Physiological reaction of two varieties of wheat under salinity stress. Journal of Agricultural Science. 26: 57-63.

Postini, K. and Salmani Zahtab, S. (1997) Effect of salinity on production and renewed translocation of dry material in two varieties of wheat. Journal of agricultural science. 29: 11-16.

Rashed Mohasel, M.H. (1992) Khorasan vegetatives. Secondary report. Ferdowsi university of Mashhad. 567 pages.

Zargary, A. (1997) Medicinal plants. Tehran University.

Salami, M.R., Safarnejad, A. and Hamidi H. (2006) Effect of salinity stress on morphological characters Of *Cuminum cyminum* and *Valeriana officinalis*. Pajouhesh-Va-Sazandegi. 19(3 (72 In Natural Resources)):77-83.

Safarnejad, A., Ali Sadr, S.V. and Hamidi, H. (2007) Effect of salinity stress on morphological characters Of *Nigella sativa*. Iranian Journal of Rangelands and Forests Plant Breeding And Genetic Research. 15(1 (27)):75-84.

Mohammad Doust Shiri, A.R., Safarnejad, A. and Hamidi, H. (2009) Morphological and biochemical characterization of *Ferula assafoetida* in response to salt stress. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research. 17(1(33)):38-49.

Safarnejad, A., Salami, M.R. and Hamidi, H. (2008) Effect of salinity stress on morphological characters of fleawort. Pajouhesh-Va-Sazandegi . 76.

Tarzi, A.M. (1995) Effect of salinity stress on essential oil of *Cuminum cyminum* in tissue culture and plant. MSc thesis of plant sciences. Tehran University.

Karimi, A and Shekari, F. (1996) Investigation of tolerance of Yazd barely varieties (Chah Afzal) to different concentrations of anions in salty soil of Tabriz in germination stages. Journal of agricultural research of seed and plant. 12: 1-9.

Nabizadeh, M.R. (2003) Effect of salinity stress on growth and yield of *Cuminum cyminum*. MSc thesis of agronomy. Ferdowsi University of Mashhad.