

INTERNATIONAL JOURNAL OF ADVANCED BIOLOGICAL RESEARCH

© 2004-2016 Society For Science and Nature (SFSN). All Rights Reserved. www.scienceandnature.org

INSILICO STUDIES AND MOLECULAR MODELLING OF FOOD ENZYMES FROM DIFFERENT SOURCES

Megha, S.V., Karthigeyan, V., Maragathavalli, S., Brindha, S. and Annadurai, B. Research and Development Centre, Bharathiar University, Coimbatore

ABSTRACT

Food enzymes are subjected to *insilico* studies and molecular modelling with a strong basis of biochemical and biophysical knowledge. In recent years, the dramatic development of the genomic and post genomic research has provided this as well as all other fields of life sciences with a massive body of new data, including, but not limited to, protein sequence and structural data. By integrating these new data with the wealth of information available in the literature, it is possible to achieve an unprecedented overview of the properties and functions of Food enzymes in the context of biological systems. To this aim, the role of bioinformatics is essential. In this work, we use bioinformatics tools and databases that we have developed for the study of Food enzymes to gain insights into the functions of components in Food enzymes, its coordination properties, and the usage of Food enzymes in living organisms. The following results like Compute pI/MW, Protscale, Peptide cutter (Primary sequence analysis), GORIV, SOPMA, TmPred, TNHMM (Secondary Structure), Pair wise sequence alignment, Multiple sequence alignment, Wire frame model, Backbone, Sticks, Space fill model, Ball and Stick model, Strands, Cartoons, Molecular surface of Proteinase, Pectinase, Cellulase and Laccase were analysed and presented.

KEY WORDS: PDB, PROSA, Homology modeling, Compute pI, GORIV, TMPred, TNHMM.

INTRODUCTION

Enzymes are in the center of biochemical processes. They catalyze largest part of all chemical reactions in the living organisms (from viruses to human) and are characterized by unique capabilities to accelerate the reaction rates and to catalyze specific or very selective number of chemical transformations. Not surprisingly the enzymes received application in biomedicine, pharmacy, massive biotechnological and chemical industry. The current progress in understanding enzymes underlines the new perspective of their applications and utilization in important areas for us. There is vastly growing amount of novel structures, spectroscopic data about intermediates, novel inhibitors synthesized and even enzymes with novel functions engineered. The current thematic issue of Enzymes studies, its mechanisms, inhibition and dynamics is focused on high quality studies by broad range of experimental and computational methods. Contributions focused integrated on modelling/ experimental or combination between different experimental methods and the multilevel applications of computational methods are investigated. Highly valued will be combined fundamental and innovative contributions focused on the applications of the enzyme mechanisms and in the all areas with impact for the society: industry, health, food etc. Finally it strengthens, develop, demonstrate and facilitate the independence of thinking, creativity, initiative of researchers at all levels.

Proteases execute a large variety of functions and have important biotechnological applications. Proteases represent one of the three largest groups of industrial enzymes and find application in detergents, leather industry, food industry, pharmaceutical industry and bioremediation processes. For an enzyme to be used as an detergent additive it should be stable and active in the presence of typical detergent ingredients, such as surfactants, builders, bleaching agents, bleach activators, fillers, fabric softeners and various other formulation aids. Cellulase I.U.B.:3.2.1.41, 4-(1, 3; 1, 4)- -D-Glucan-4-glucanohydrolase, Cellulase refers to a group of enzymes which, acting together, hydrolyze cellulose. It has been reviewed by Whitaker (1971).

In nature cellulose is usually associated with other polysaccharides such as xylan or lignin. It is the skeletal basis of plant cell walls. According to Spano *et al.* (1975) cellulose is the most abundant organic source of food, fuel and chemicals. However, its usefulness is dependent upon its hydrolysis to glucose. Acid and high temperature degradation is unsatisfactory in that the resulting sugars are decomposed; also, waste cellulose contains impurities that generate unwanted by-products under these harsh conditions.

Cellulase is a group of enzymes that catalysescellulolysis. It is mainly produced by fungi, bacteria and some protozoans. The active research of cellulases was started in 1950. After knowing its potentiality to convert lignocellulases. It is studies extensively due to their applications in the hydrolysis of cellulose, the most abundant biopolymer and potential source of utilizable sugar, which serves as a raw material in the production of chemicals and fuel (Ali *et al* 2011, Pradeep *et al*, 2012). Since, Cellulases is used mostly in textiles, food and the bioconversion lignocellulosic waste to alcohol, it becomes industrially important. Because largely is used in the industries, large scale of production (Microbial strains). Isolation and purification, Procedures are required. In

addition to that the computational tools and insilico studies are required to preserve and reduce the cost of cellulase. Bioinformatics revolutionized the field of molecular biology. The raw sequences information of proteins and nucleic acid can convert to analytical and relative information with the help of soft computing tools. Prediction of protein function is important application of bioinformatics (Prasanth *et al.*, 2010).

Pectinases, or pectinolytic enzymes, are produced by a number of bacteria, yeast, fungi, protozoa, insects, nematodes and plants [23] in order to degrade (to obtain a carbon source) or to modify (in fruit ripening etc.) the heteropolysaccharide pectin. They can be classified, based on the type of linkages they attack, into the esterases, which saponify the substrate, and the depolymerases. The depolymerases can be subdivided based on the bond cleavage mechanism into the class of the hydrolases (hydrolytic cleavage) and the class of the lyases (elimination cleavage). Pectinases show different substrate specificity, but basically they can be separated into a of homogalacturonan and a group of group rhamnogalacturonan specific enzymes. Besides the main pectin backbone-degrading enzymes, the 'accessory' enzymes, active towards the side chains of pectin, are needed to fully accomplish pectin degradation.

1.10.3.2. benezenediol: Laccases (EC oxygen oxidoreductases), first described from the lacquer tree Rhus vernicifera (Yoshida, 1883), are multi-copper oxidases that catabolize a variety of aromatic ring structures, e.g. p-diphenols, but not tyrosine, via reduction of molecular oxygen to water . The general structure of laccases is rather diverse, but the structure of the active site seems to be well conserved in fungal laccases. Laccases usually have three copper ions (T1, T2, and T3) coordinated with histidine residues (Giardina et al., 2010, Solomon et al., 1996). The T1 copper is also termed the "blue copper", imparting the characteristic blue color. The lack of the T1 copper is a feature of the socalled "yellow" or "white" laccase (Baldrian, 2006). The absence of T1 copper in some laccases has caused some authors to question if such laccases can in fact be termed "true" laccases, although they can oxidize phenols. The term "laccases with unusual spectral properties" has been suggested as more appropriate. Laccases are commonly found in higher plants, fungi, insects, and microorganisms. Plant laccases have been suggested to be involved in lignin polymerization, but experimental proof was missing. Recently, experimental studies in Arabidopsis thaliana and Populus trichocarpa provided evidence that laccases are in fact involved in lignification. Fungal laccases have been more intensively studied, and exhibit various physiological functions, including lignin degradation (Arora & Sharma, 2010; Thurston, 1994), an involvement in virulence, pathogenesis, conidial pigmentation, and morphology.

Bioinformatics has revolutionized the field of molecular biology. The raw sequence information of proteins and nucleic acid can convert to analytical and relative information with the help of soft computing tools. Prediction of protein function is important application of bioinformatics (Prashant V *et al*, 2010). In the present bioinformatics analysis characterization of Food enzymes from different sources were carried out. Protein sequences were retrieved from NCBI and were subjected to ProtParam to analyze various physicochemical properties, secondary structure was predicted by SOPMA, multiple sequence analysis and phylogenetic analysis was carried out by CLC workbench, the protein 3D model and its characteristics were predicted by ESyPred 3D software. These parameters will assist the biochemist and physiologists in extraction, purification, separation and industrial applications of the enzyme

System (Materials) and Tools PDB

The PDB is the single worldwide repository for the processing and distribution of 3-D structure data of large molecules of proteins and nucleic acids, as determined by X-ray crystallography or nuclear magnetic resonance (NMR) imaging. The molecules described by the files are usually viewed locally by dedicated software, or can be visualized on the World Wide Web. The number of known protein structures is increasing very rapidly and these are available on the protein Data Bank. There is also a database of structures of 'small' molecules, of interest to biologists concerned with protein-ligand interactions, from the Cambridge Crystallographic Data Centre.

RCSB DATABASE

The World Wide Web site of the protein data bank at the RCSB offers a number of services for submitting and retrieving three-dimensional structure data. The home page of the RCSB site provide links to services for depositing three-dimensional structures, information on how to obtain the status of structures undergoing processing for submission. Ways to download the PDB database and links to other relevant sites and software.

Description of tools used

Protparam

ProtParam is a tool which allows the computation of various physical and chemical parameters for a given protein stored in SwissProt or TrEMBL or for a user entered sequence. The computed parameters include the molecular weight, theoretical pI, amino acid composition, atomic composition, extinction coefficient, estimated halflife, instability index, aliphatic index and grand average of hydropathicity (GRAVY)

Compute PI/MW

Compute pI/Mw is a tool which allows the computation of the theoretical pI (isoelectric point) and Mw (molecular weight) for a list of Prot or entries or for user entered sequences

Profilescan

Profile, Scan uses a method called pfscan tofind similarities between a protein or nucleic acid query sequence and a profile library. In this case, three profile libraries are available for searching. First is PROSITE an ExPASy database that catalogs biologically significant sites through the use of motif and sequence profiles and patterns. Second is Pfam. Which is a collection of protein domain families that differ from most such collections in one important aspect the initial alignment of the protein domains is families that differ from most such collections in one important aspect the initial alignment of the protein domains is done by hand? Rather than by depending on automated methods. As such Pfam contains slightly over 500 entries but the entries are potentially of higher quality. The third profile set is referred to as the Gribskov collection.

SOPMA

The protein Sequence Analysis server at the Centre National de la Recherché Scientifique in Lyons. France takes a unique approach in making secondary Structure predictions: rather than using a single method, it uses five, the predictions from which are subsequently used to come up with a "consensus predictions." The methods used are the GarnierGibrat Robson method the Levin homolog method the double-prediction method the PhD method described above as part of Predict Protein, and the method of CNRS itself, called SOPMA as Briefly, this selfoptimized prediction method builds sub databases is quences with known secondary structure prediction based on sequence similarity. The information from the sub databases is then used to generate a prediction on the query sequence.

SIGNALP

SignalP predicts the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms: Gram-positive prokaryotes, Gram-negative prokaryotes, and eukaryotes. The method incorporates a prediction of cleavage sites and a signal peptide/non signal peptide prediction based on a combination of several artificial neural networks and hidden Markov models.

TARGETP

TargetP predicts the sub cellular location of eukaryotic proteins. The location assignment is based on the predicted presence of any of the N terminal presequences: chloroplast transit peptide (cTP), mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP).

CHOLOROP

The ChloroP server predicts the presence of chloroplast transit peptides (cTP) in protein sequences and the location of potential cTP cleavage sites. A related service <u>TargetP</u> predicts the sub cellular location of proteins by integrating predictions of chloroplast transit peptides, signal peptides and mitochondrial targeting peptides.

Homology modeling

The amino acid sequence of Food enzyme was obtained from the NCBI protein database (http://www.ncbi.nlm. nih.gov/protein). Crystal structure of Trametes hirsute laccase was taken from the protein data bank (PDB ID: 3FPX) (Berman HM ,2000) and used as the template for building the initial 3D model. The sequence alignment of laccase with the template was accomplished using ClustalW 2.0 (http://www.ebi.ac.uk/ Tools/clustalw2/ index.html). The Modeller 9v7 program (Sali A, Blundell TL (1993) was employed to generate the initial 3D models of laccase. Modeller generates the 3D models by optimization of molecular probability density functions. The optimization process consists of applying the variable target function as well as conjugated gradients and molecular dynamics with simulated annealing. A set of 20 models of Food enzymes were produced based on the resulting alignment obtained above. The outcomes were ranked based on the internal scoring function of Modeller.

RESULTS & DISCUSSION

I. Proteinase

The coils output for proteinase obtained were shown in Figure 1. Coils is program that compares a sequence to a database of known parallel to standard coiled - coils and derives a similarity score. By comparing this score to distribution of scores in globular and coiled-coil proteins, the program then calculates the probability that the sequence will adopt a coiled-coil conformation.

Coils output for proteinase

coils-def-in=../wwwtmp/.COILS.27269.5764.seq out=../wwwtmp/.COILS.27269.5764.out -mat=2 # COILS version 2.1 # using MTIDK matrix # no weights # Input file is ../wwwtmp/.COILS.27269.5764.seq #>proteinase, 466 bases, 7FE6643A checksum.

Figure 1 shows the theoretical isoelectric point and molecular weight of the enzyme proteinase from this program the molecular weight of the proteinase is conformed as 43387.78 and the isoelectric point of the protenase is 7.82.

AF015775. Bacillus subtilis...[gi:2415383]

>gi|2415383|gb| AF015775.1|AF015775 Bacillus subtilis YodA (yodA), YodB (yodB), YodC (yodC), YodD (yodD), ABC-transporter (yodE), permease (yodF), proteinase (ctpA), YodH (yodH), YodI (yodI), carboxypeptidase (vodJ), purine nucleoside phosphorylase (deoD), YodL (vodL), YodM (vodM), YodN (vodN), YodO (yodO), YodP (yodP), acetylornitine deacetylase (argE), butirate-acetoacetate CoA transferase (vodR), butyrate acetoacetate-CoA transferase (yodS), YodT (yodT), CgeE (cgeE), CgeD (cgeD), CgeC (cgeC), CgeA (cgeA), CgeB (cgeB), YzxA (yzxA), UDP-glucose epimerase (yodU), YodV (yodV), and YodW (yodW) genes, complete cds; and YodZ (yodZ) gene, partial cds

Insilico studies and molecular modelling of food enzymes

Figure 2 shows the gene sequence of proteinase obtained peptide cutter searches a protein sequence from the SWISS-PROT and / or TrEMBL databases are a user entered protein sequence for protease sequence site. Single proteases and chemicals, a selection are the whole list of proteases and chemicals can be used. Different forms of the output of the result of available. The sequence map is displayed in portions of 10 to 60 aminoacids. when the results are displayed in form of map, the user as the possibility to select one enzymes is choice by mouse clicking. The sites that are potentially cleaved by this enzymes are then displayed in a separate window.

PeptideCutter

The sequence to investingate:

20 30 40 50 6<u>0 70</u> 9<u>0</u> 100 11<u>0</u> 12<u>0</u> 10 80 MKRQLKLFFI VLITAVVASA LTLFITGNSS ILGQKSASTG DSKFDKLNKA YEQIKSDYY KTDDDKLVDG AIKGMIQSLD DPYSTYMDQ EOAKSFDETIS ASFEGIGAQV EEKDGEILIV SPIKGSPAEK AGIKPRDQII KVNGKSVKGM NVNEAVALIR GKKGTKVKLE KGYILDLRGN PGGLMEQAIT SETTAKELTD LNRAGVGNIDLSIKRDTIPV ETVYSEMKDN NIGEIQITSF AIDSLEKKGA RKVTKPTVVL MSNLFIDKGK NIMQVEYKNG SKEVMKAEKE VNDGTASAAE IMAAALHESS NVPLIGETTF GKGTVQTAKEY WIHKKGIKPQVKAELPDYAK LPYLDADKTY KSGDTGTNVK VAQKMLKALG DDGSTVKLT VAKWLTADGE YKVKVNSMYD QDFVSVVKQF QKKEKLNETG ILTGDTTTKL MIELQKKLSD NDTQMEKAIE TLKKEM

The sequence is 466 amino acids long.

These enzymes cleave the sequence:

Name of enzyme	No. of cleavages	Positions of cleavage sites
<u>Pepsin</u> (pH1.3)	99	6 7 7 9 11 12 20 21 22 23 23 24 31 32 43 44 46 47 50 58 58 59 66 67 78 79 82 85 86 94 102 103 117 118 157 158 169 171 180 181 193 194 209 210 217 224 225 232 234 235 236 237 243 244 253 254 254 255 266 267 289 290 305 306 313 319 320 330 338 339 343 344 344 350 351 365 368 371 374 379 395 398 400 401 408 409 412 413 419 426 431 432 439 440 443 444 447 461 462

Figure 3. shows the peptide cutter of proteinase using the pepsin as a cutter

These are the cleavage sites of the chosen enzymes and chemicals mapped onto the entered protein Sequence:

QKKEKLNETGILTGDTTTKLMIELQKKLSDNDTQMEKAIETLKKEM <u>Pn1.3Pn1.3Pn1.3</u>
<u>Pn1.3</u> <u>Pn1.3</u> <u>Pn1.3</u>
<u>Pn1.3</u> <u>Pn1.3</u> <u>Pn1.3</u>
<u>Pn1.3</u> <u>Pn1.3</u> <u>Pn1.3</u> <u>Pn1.3</u>
$\underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} \underline{Pn1.3} $
MKRQLKLFFIVLITAVVASALTLFITGNSSILGQKSASTGDSKFDKLNKAYEQIKSDYYQ
1 60
<u>Pn1.3Pn1.3</u> <u>Pn1.3Pn1.3</u> <u>Pn1.3Pn1.3</u>
<u>Pn1.3</u> <u>Pn1.3</u> <u>Pn1.3Pn1.3</u> <u>Pn1.3</u>
KTDDDKLVDGAIKGMIQSLDDPYSTYMDQEQAKSFDETISASFEGIGAQVEEKDGEILI
61+ 120
<u>Pn1.3Pn1.3Pn1.3 </u> <u>Pn1.3 </u> <u>Pn1.3</u>
SPIKGSPAEKAGIKPRDQIIKVNGKSVKGMNVNEAVALIRGKKGTKVKLELNRAGVGNID
121+ 180
<u>Pn1.3</u>
<u>Pn1.3</u>
<u>Pn1.3</u>
<u>Pn1.3Pn1.3Pn1.3Pn1.3</u>
<u>Pn1.3</u> Pn1.3 Pn1.3 Pn1.3 Pn1.3 M

I.J.A.B.R, VOL. 6(4) 2016: 516-537

120

|| || || LSIKRDTIPVETVYSEMKDNNIGEIQITSFSETTAKELTDAIDSLEKKGAKGYILDLRGN 181 ---+-----+ 240 Pn1.3 Pn1.3Pn1.3 Pn1.3Pn1.3 <u>Pn1.3</u> <u>Pn1.3</u> <u>Pn1.3</u> Pn1.3 PGGLMEQAITMSNLFIDKGKNIMQVEYKNGSKEVMKAEKERKVTKPTVVLVNDGTASAAE 241 -----+ 300 Pn1.3 Pn1.3 Pn1.3Pn1.3Pn1.3 || Pn1.3 <u>Pn1.3</u> <u>Pn1.3Pn1.3</u> <u>Pn1.3Pn1.3</u> <u>Pn1.3</u> | || || || || IMAAALHESSNVPLIGETTFGKGTVQTAKEYDDGSTVKLTVAKWLTADGEWIHKKGIKPQ 301 -----+----+ 360 Pn1.3 $\underline{Pn1.3}Pn1.3\underline{Pn1.3} \mid \underline{Pn1.3} \mid \underline{Pn1.3} \mid \underline{Pn1.3} \mid \underline{Pn1.3} \mid \underline{Pn1.3} \mid \underline{Pn1.3} \mid$ Pn1.3 <u>Pn1.3</u> | | | | | <u>Pn1.3</u> | || <u>Pn1.3</u> || Pn1 VKAELPDYAKLPYLDADKTYKSGDTGTNVKVAQKMLKALGYKVKVNSMYDQDFVSVVKQF -----+ 420 361 <u>Pn1.3</u> <u>Pn1.3</u> <u>|Pn1.3Pn1.3|</u> <u>Pn1.3</u> <u>Pn1.3Pn1.3</u> <u>||</u> <u>Pn1.3|</u> || | Pn1.3 421 ------ 466

Figure 4 shows the Prot param it is the user provided sequence of proteinase. It shows a number of amnio acid in proteinase, molecular weight, theoretical pI, amino acid composition, total number of negatively charged residues (Asptculor)., total number of positively charge residues, atomic composition formula, total number atom present in the protenase.Extinct air co-efficient, estimated of life instability indere (II), and grand average hydropathicity (gravy) of proteinase. By this, the number amino acid in proteinase found to be 466. The molecular weight of proteinase is 51148.7. The theoretical isoelectric point of

proteinase is 8.44. Total number of negatively charged residues (Asptalu) east 66. Total number positively charged residues (Arg + lys) is 69. The atomic composition of proteins are carbon C: 2260, hydrogen H : 3702, nitrogen N: 594, Oxygen O: 717, Sulphur S: 15. the molecular formula is C 2260 H 3702 N594 O 717 S 15. extinction co-efficient (EC is 31860. Total number atoms present in proteinase is 7288. The estimated of life of proteinase is 30 hours. Instability index of the proteinease is 20.43. And the grand average of hydropathcity is (gravy) is 0.436.

10 20 30 40 50 60 70 80 90 100 110 AIKGMIQSLD DPYSTYMDQE QAKSFDETIS ASFEGIGAQV EEKDGEILIV SPIKGSPAEK AGIKPRDQII KVNGKSVKGM NVNEAVA LIR GKKGTKVKLE LNRAGVGNID LSIKRDTIPV ETVYSEMKDN NIGEIQITSF SETTAKELTD AIDSLEKKGA KGYILDLRGN PGGLME QAITMSNLFIDKGK NIMQVEYKNG SKEVMKAEKE RKVTKPTVVL VNDGTASAAE IMAAALHESSNVPLIGETTF GKGTVQTAKE YDDGSTV KLT VAKWLTADGEWIHKKGIKPQ VKAELPDYAKLPYLDADKTY KSGDTGTNVK VAQKMLKALG YKVKVNSMYD QDFVSVVKQF QKKEKLNET GILTGDTTTKL MIELQKKLSD NDTQMEKAIE TLKKEM

Theoretical pI/Mw: 7.82 / 43387.78

Figure 5 shows the Prot scale user provided sequence of proteinase. Prot scale allows to compute and represent the profile produced by any amino acid scale on a selected protein. An amino acid scale is defined by a numerical value assigned to each type of amino acid and most frequently used scales are hydropobicity scales, and secondary structure conformational parameter scales.

5<u>0 60 _70 80</u> LTLFITGNSS II LTLFITGNSS ILGQKSASTG I AIKGMIQSLD DPYSTYMDQE PAEK AGIKPRDQII KVNGKSVVCCV LSIKPDOWC 3<u>0</u>4<u>0</u>5 VLITAVVASA KTDDDKLVDG 110 120 MKROLKLEFT DSKFDKLNKA QAKSFDETIS YEQIKSDYYQ ASFEGIGAQV EEKDGEILIV SPIKGSPAEK AGIKPRDQII KVNGKSVKGM NVNEAVALIR GKKGTKVKLE LNRAGVGNID LSIKRDTIPV SETTAKELTD AIDSLEKKGA KGYILDLRGN ETVYSEMKDN NIGEIOITSF SETTAKELTD AIDSLEKKGA KGYILDLIGGN PGGLMEQAIT MSNLFIDKGK NIMQVEYKNG SKEVMKAEKE RKVTKPTVVL VNDGTA IMAAALHESS NVPLIGETTF GKGTVQTAKE YDDGSTVKLT VAKWLTADGE WIHKKGIKPQ VKAELPDYAK LPYLDADKTY KSGDTGTNVK VAQKMLKALG YKVKVNSMYD QDFVSVVKQF QKKEKLNETG ILTGDTTTKL MIELQKKLSD NDTOMEKAIE TLKKEM SEQUENCE LENGTH: 466

Using the scale <u>Hphob. / Kvte & Doolittle</u>. the individual values for the 20 amino acids are: Ala: 1.800 Arg: -4.500 Asn: -3.500 Asp: -3.500 Cys: 2.500 Gln: -3.500 Glu: -3.500 Gly: -0.400 His: -3.200 Ile: 4.500 Leu: 3.800 Lys: -3.900 Met: 1.900 Phe: 2.800 Pro: -1.600 Ser: -0.800 Thr: -0.700 Trp: -0.900 Tyr: -1.300 Val: 4.200 Asx: -3.500 Glx: -3.500 Xaa: -0.490

 Weights for window positions 1,...9, using linear weight variation model:

 1
 2
 3
 4
 5
 6
 7
 8
 9

 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00

 edge
 center
 edge

 MIN: -2.789

MAX: 3.256

Figure 6 shows the prot scale output for user sequence by this it is known individual hydrophobic values for 20 amino acid is Ala: 1.800, Arg: 4.500, Asn:3.500, Asp:3.500, Cys:2.500, Gln:3.500, Glu:3.500, Gly: 0.400,

His:3.200, Ele: 4.500, Leu:3,800, Lys:3.900, Met:1.900, Phe:2.800, Pro:1.600, Ses: 0.800, Thr: 0.700, Trp: 0.900, Tyr:1.300, Val: 4.200, Glx: 3.500, Xaa: 0.490 from the

above graph the maximum hydrophobic value is 3.256, the minimum hydrophobic value: 2.789.

>proteinase

SignalP-NN result:

SignalP-HMM result

>proteinase

Prediction: Signal peptide Signal peptide probability: 0.685

Signal anchor probability: 0.315 Max cleavage site probabilities: 0.341 between pos. 22 and 23

Figure 8 shows the signal P HMM result by this it is understood the proteinase prediction is a signal peptide. Signal peptide probability is 0.685 and signal anchor probability is 0.315. The cleavage site probability is a 0.341 between position 22 and 23 by this it is understood the signal peptide present is only as secretary protein type.

SOSUI

Query title : proteinase Total length : 466 A. A. Average of hydrophobicity : -0.435622 This amino acid sequence is of a MEMBRANE PROTEIN which have 1 transmembrane helix.

No.	N terminal	transmembrane region	C terminal	Туре	Length
1	7	LFFIVLITAVVASALTLFITGNS	29	PRIMARY	23

Figure 9 shows SOSUI result for proteinase this stable shows the transmembrane helix region of proteinase and the type of protein and length of the transmembrane region. By this it is known transmembrane region of the proteinase is LEFILITAVVASALTLITNGS. The Nterminal end of the transmembrane regions 7th position, Cterminal end of the transmembrane region 29th position, type of proteinase is primary type. The length of the transmembrane region in proteinase is 23. from the above results it is concluded that there are 23 amino acids are present in the transmembrane regions. And that too from the 7th position of N-terminal to 29th position of C-terminal of the proteins. Hence, it is concluded the protease is the membrane protein

TMpred output for proteinase

Sequence: MKR...KEM, length: 466

Prediction parameters: TM-helix length between 17 and 33 **1.) Possible transmembrane helices**

The sequence positions in brackets denominate the core region.Only scores above 500 are considered significant. Inside to outside helices : 2 found from to score

center

7 (9) 27 (25) 2524 17 286 (286) 310 (305) 67 297

Outside to inside helices : 1 found from to score center

7 (7) 25 (25) 2463 17

2.) Table of correspondences

Here is shown, which of the inside->outside helices correspond to which of the outside->inside helices.Helices shown in brackets are considered insignificant.A "+"-symbol indicates a preference of this orientation.A "++"-symbol indicates a strong preference of this orientation. inside->outside | outside->inside

7- 27 (21) 2524 | 7- 25 (19) 2463 (286- 310 (25) 67 ++) |

3.) Suggested models for transmembrane topology

N-terminus inside 1 strong transmembrane helices, total score : 2524 from to length score orientation 1 7 27 (21) 2524 i-o alternative model 1 strong transmembrane helices, total score : 246 from to length score orientation 1 7 25 (19) 2463 o-.

Fig. 11 shows the Wire frame model from Pseudomonas aeruginosa

Fig 14. shows the Spacefill model of Pseudomonas aeruginosa

Fig 17. shows the Strands of Proteinase of Pseudomonas aeruginosa Proteinase

Fig. 12 shows backbone of proteinase from Psuedomonas

Fig 15. shows the .Ball ad Stickof protienase

Fig 18. shows the Cartoons of Proteinas from Pseudomonas aeruginosa

Fig. 13 shows the Stick model of Proteinase of Pseudomonas

Fig 16. shows the ribbon model proteinase

Fig 19. shows Molecular surface of from Pseudomonas aeruginosa

DISCUSSION

From the above picture the Proteinase produced from the organism have 2 number of chains,470(340) number of groups ,3505 number of atoms,56 bonds,12 helices,21 strands,zero number of turns and 3581 number of bonds.

II Cellulase.

ProtParam Result:

User-provided sequence: 20 40 50 60 10 30 MNCRKYLLSG LAVFGLAATS AVAALSTDDY VEAAWMTTRF FGAQRSGQGP NWILDGTSNPTSFTKDSYNG KDVSGGWFDC **GDHVMYGQSQ GYASYVLALA** YAEFTEVSTT FILVTTPTTR KPTTTPMKSG KPNKVRDLLE ELRYEADFWV KAAIDGNNFV TVKGDGNADH QKWVTAGKLGSGEGGEP RCITGNANDG FTSGLAA AML AVMARVDPDT ANQAKYLKAA KTAYSYAKSH KGVTNSQGFY ESSWWDGRWE DGPFLAELEL YRTTGENSYK TAAIDRYDNL KFSLGEMYSNVVPLSA VMAEAVFEET PHGMRKEAIG VLDLIYEEKA KDKIFQNPNG MGSGKFPVRV PSGGAFLYAL SDKFNNTNEH MEMIEKNVSY LLGDNGSKKS YVVGFSKNGA NAPSRPYYANEKRWRR SRRCSESSRK EQALGRYDCW RLY. Number of amino acids: 453 Molecular weight: 50042.0 Theoretical pI: 8.35 Amino acid composition: Ala (A) 45 9.9% Arg (R) 23 5.1% Asn (N) 25 5.5% Asp (D) 24 5.3% Cys (C) 5 1.1% Gln (Q) 9 2.0% 9.7% Glu (E) 26 5.7% Gly (G) 44 His (H) 8 1.8% Ile (I) 9 2.0% 6.6% Met (M) 13 2.9% 4.4% Leu (L) 30 Lys (K) 30 6.6% Phe (F) 20 Pro (P) 16 3.5% Ser (S) 36 7 9% Thr (T) 30 6.6% Trp (W) 10 2.2% Tyr (Y) 24 5.3% Val (V) 26 5.7% Total number of negatively charged residues (Asp + Glu): 50 Total number of positively charged residues (Arg + Lys): 53 Atomic composition: Carbon 2218 Hydrogen 3378 Nitrogen N 612 Oxygen Sulfur 18 0

Formula: C₂₂₁₈H₃₃₇₈N₆₁₂O₆₇₈S₁₈ **Total number of atoms:** 6904

Extinction coefficients: Extinction coefficients are in units of M^{-1} cm⁻¹, at 280 nm measured in water. Ext. coefficient 91010 Abs 0.1% (=1 g/l) 1.819, assuming ALL Cys residues appear as half cystines Ext. coefficient 90760 Abs 0.1% (=1 g/l) 1.814, assuming NO Cys residues appear as half cystines

Estimated half-life:

The N-terminal of the sequence considered is M (Met).

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro).

>20 hours (yeast, in vivo).

>10 hours (Escherichia coli, in vivo).

Instability index:

The instability index (II) is computed to be 29.52

This classifies the protein as stable.

RESULT

The given protein is calculated with various parameters to give good results. There are number of parameters are used to analyse the given protein sequence.

- 1. Calculated number of amino acid present in the given protein sequence is 453.
- 2. Calculated the molecular weight of protein sequence is 50042.0
- 3. Calculated the theoretical isoelectric point of protein sequence is 8.35

Insilico studies and molecular modelling of food enzymes

- 4. Calculated each amino acid sequence molecular weight represents in a molecular percent.
- 5. Calculated the number of positive charges amino acids is 53
- 6. Calculated the number of negative charge amino acids is 50
- 7. Calculated the number of atoms of amino acid of protein is 6904
- 8. Give the molecular formula of given protein sequence is $C_{2218} H_{3378} N_{612} O_{678} S_{18}$
- 9. The extinction co-efficient of protein sequence is calculated.
- 10. Computed the half-life of given protein is 30 (hours)
- 11. Computed the instability of given protein sequence is 29.52

Inference

From this result I have got protein molecular weight, isoelectric point, each aminoacids composition with molar percent values, positive charge residues and negative charge residues, number of atoms of amino acids, formula of proteins, total number of atoms, stability of proteins, half of proteins and extinction co-efficient in the protein sequence.

Result

The given protein is calculated with various parameters to give good results. There are number of parameters are used to analyse the given protein sequence.

Inference

In this site calculate the molecular weight of the 1ut9A sequence is 50042.0 and isoelectric point is 8.35.

3. Reverse Translate Results:

Results for 394 residues sequence ''P23665|GUNA_FIBSU Endoglucanase A - Fibrobacter

MNCRKYLLSGLAVFGLAATSAVAALSTDDYVEAAWMTTRFFGAQRSGQGPNWILDGTSNP'' starting ''TSFTKDSYNG'' >reverse translation of P23665|GUNA_FIBSU Endoglucanase A - Fibrobacter MNCRKYLLSGLAV FGLAATSA VAALST DDYV EAAWMTTRFFGAQRSGQGPNWILDGTSNP to a 1182 base sequence of most likely codons.

Result: The given protein sequence is converted to DNA by using Reverse Translate.

4. ScanProsite Results Viewer:

This view shows ScanProsite results together with ProRule-based predicted intra-domain features

MNCRKYLLSGLAVFGLAATSAVAALSTDDYVEAAWMTTRFFGAQRSGQGPNWILDGTSNPTSFTKDSYNGKDVSGGWFDCGDHVMYGQSQGYASYVLALAYAEFTEVSTTFILVTTPTTRKPTTTPMKSGKP

NKVRDLLEELRYEADFWVKAAIDGNNFVTVKGDGNADHQKWVTAGAMSKLGSGEGGEPRCITGNANDGFTSGLAAAMLAVMARVDPDTAN QAKYLKAAKTAYSYAKSHKGVTNSQGFYESSWWDGRWEDGPFLAELELYRTTGENSYKTAAIDRYDNLKFSLGEGTHFMYSNVVPLSAVMA EAVFEETPHGMRKEAIGVLDLIYEEKAKDKIFQNPNGMGSGKFPVRVPSGGAFLYALSDKFNNTNEHMEMIEKNVSYLLGDNG SKKSYVVGFSKNGANAPSRPHHRGYYANEKRWRRSRRCSESSRKEQALGRYDCW

Inference

Scanprosite search a given protein against prosite database to occurrence of pattern and profile.GLYCOSYL_HYDROL_F9_1 active site is found between 403 -419 in the sequence.

Fig 20.Wire frame model of Cellulase Ceratocystis paradoxa paradoxa

Fig23.spacefill model of Cellulase Ceratocystis paradoxa

Fig 21 Backbone of Cellulase

Fig 24 Ball and Stick model of Cellulase

Fig 22.Sticks of Cellulase from from Ceratocystis

Fig 25 shows Ribbon model of Cellulase

Fig 24 Strand model of Cellulase from Ceratocystis paradoxa Cellulase

181.000 Val: 117.000 : 132.500 : 146.500 : 136.750

Fig 25 .Cartoon model of Cellulase Cellulase

Fig 26 shows Molecular surface of Ceratocystis paradoxa

Discussion

From the above picture the Cellulase produced from the organism have 6 number of chains,440 number of groups 3331 number of atoms,10 bonds,6 helices,32 strands,zero number of turns and 3429 number of bonds

III Pectinase

Primary sequence analysis

. .

Compute pl/MwTheoretical pl/Mw (average) for the use r-entered sequence:							
$\frac{10}{10} \frac{20}{20} \frac{30}{20} \frac{40}{20} \frac{50}{20} \frac{60}{20} \frac{70}{20} \frac{80}{20} \frac{90}{20} \frac{100}{100} \frac{110}{20} \frac{120}{20}$							
MVALILGIFF ISLAASAVAA PAPAIIPAPK PEVVKKASSU IFSUSNGAAE ASKSQSSUAI MVLSDVAVPS GIILDLSSLA DGIIVIFEGI TTWGYSEWKG PLIDIOGKKI TVKGAEGSVI							
NGDGARWWDG KGGNGGKTKP KFFSAHKLTD STITGITIKN PPVOVVSING CDGLIDASDGDKDE OGHNTDGFDI GSSNNVTIDG							
AKVYNODDCV AVNSGTEITF							
LSIGSVGGRD DNTVDTVTFS NSEVTKSVNG VRVKAKVGTT GKINKVTYED ITLSEISKYG VLIEQNYDGG DLHGDADTGV PITALTLDNV							
TGGVSSSGYD VVVTCGKGSC TGWTWTGV							
TGGKTYDKCS NVPSVTKCS							
Theoretical pI/Mw: 4.85 / 38816.1 protparam:							
Number of amino acids: 379							
Molecular weight: 38816.1							
Theoretical pI: 4.85							
Amino acid sequence:							
Ala (A) 25 6.6% Arg (R) 4 1.1% Asn (N) 18 4.7% Asp (D) 30 7.9% Cys (C) 9 2.4%							
Gln (Q) 6 1.6% Glu (E) 11 2.9% Gly (G) 51 13.5% His (H) 4 1.1% Ile (I) 20 5.3%							
Let (L) 19 5.0% Lys (K) 26 6.9% Met (M) 3 0.8% Phe (F) 9 2.4% Pro (F) 12 3.2% Sor (S) 28 10 06 The (T) 44 11.6% Ten (W) 6 1.6% Ter (W) 7 1.8% Val (V) 37 9.8%							
$Pvl (O) = 0.0\% \qquad Sec (II) = 0.0\% \qquad (B) = 0.0\% \qquad (Z) = 0.0\% \qquad (X) = 0.0\% \qquad (D) = 0.0\% \qquad (B) = 0.0\% \qquad (Z) = 0.0\% \qquad (X) = 0.0\% \qquad (D) = 0$							
Total number of negatively charged residues (Asp + Glu): 41							
Total number of nositively charged residues ($Arg + Lvs$) · 3()							
Atomic composition:							
Carbon C 1670 Hydrogen 2671 Nitrogen 455 Oyugan 575Sulfur \$12							
Earmular C H N O S							
Formula: $C_{1679}\Pi_{2671}N_{455}O_{575}S_{12}$							
Total number of atoms: 5392							
Extinction coefficients:							
Extinction coefficients are in units of M ⁻¹ cm ⁻¹ , at 280 nm measured in water.							
Ext. coefficient 43930 Abs 0.1% (=1 g/l) 1.132, assuming all pairs of Cys residues form cystines							
Ext. coefficient 43430 Abs 0.1% (=1 g/l) 1.119, assuming all Cys residues are reduced							
Estimated half-life							
The N-terminal of the sequence considered is M (Met).							
The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro).							
>20 hours (yeast, in vivo).							
>10 hours (Escherichia coli, in vivo).							
Instability index							
The instability index (II) is computed to be 21.86							
This classifies the protein as stable							
Alinhatic index: 75 0/							
Grand average of hydronathicity (CRAVV): 0.156							
Granu average of nyuropatilicity (GKAVI): -0.130							
Protocolo							
Using the scale Polarity/Grantham, the individual values for the 20 amino acids are:							
Ala: 8.100 Arg: 10.500 Asp: 13.000 Asp: 13.000 Cys: 5.500 Gin: 10.500 Giu: 12.300 Giy: 9.000 His: 10.400 He: 5.200 Leu:							
4.900 Lys: 11.300 Met: 5.700 Pre: 5.200 Pro: 8.000 Ser: 9.200 Inr: 8.600 Irp: 5.400							
1y1. 0.200 val. 5.500 ; 12.500 ; 11.400 ; 6.525							
Weights for window positions 1 9 using linear weight variation model							
1 Ala: 89.000 Arg: 174.000 Asn: 132.000 Asn: 133.000 Cys: 121.000 Gln: 146.000 Glu: 147.000 Glv: 75.000 His: 155.000							
Ile: 131.000 Leu: 131.000 Lys: 146.000 Met: 149.000 Phe: 165.000 Pro: 115.000 Ser: 105.000 Thr: 119.000 Trp: 204.000 Tyr:							

2 3 4 5 6 7 8 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	.00 1.00

	M. Jun Maria Maria
And Manage	and at a company of the second
SEQUENCE LENGTH: 379	
Using the scale Molecular weight, t	the individual values for the 20 amino acids are:
Weights for window positions 1,,9,	using linear weight variation model:
1 2 3 4 5 6 7 8 9	00.1.00
edge center edge	.00 1.00
Peptide cutter	
The sequence is 379 amino acids lon	g. Trypsin enzymes cleave the sequence:
Name of No. of Position	is of cleavage sites
enzyme cleavages Trupsin 27 35.36.5	3 00 108 100 113 126 131 137 141 147 150 212 231 240 266
<u>11ypsiii</u> 27 55 56 5. 272 274	276 282 285 298 347 364 368 377
<u>Fryps</u> MVALTLGIFFTSLAASAVAAPAPAITPAP	KPEVVKRASSCTFSGSNGAAEASKSQSSCAT
1++++++	+ 60 IFEGTTTWGYSEWKGPLLDIQGKKITVKGAEGSVL
61+++++ NGDGARWWDGKGGNGGKTKPKFFSAH	+ 120 KLTDSTITGITIKNPPVQVVSINGCDGLTITDMT
121++++++	+ 180
IDASDGDKDEQGHNTDGFDIGSSNNVTII 181	OGAKVYNQDDCVAVNSGTEITFKNGLCSGGHG
LSIGSVGGRDDNTVDTVTFSNSEVTKSV	NGVRVKAKVGTTGKINKVTYEDITLSEISKYG
241++++	+ 300 NVTGGVSSSGVDVVVTCGKGSCTGWTWTGVDV
301++++++	+ 360
TGGKTYDKCSNVPSVTKCS	
Pentide mass	
The selected enzyme is: Trypsin	
Maximum number of missed cleavag	ges (MC): 0
All cysteines in reduced form.	
Methionines have not been oxidized.	
Displaying peptides with a mass bigg	ger than 500 Dalton.
Using monoisotopic masses of the oc	curring amino acid residues and giving peptide masses as [M+H].
The peptide masses from your seque	nce are:
[Theoretical pI: 4.85 / Mw (average p	mass): 38816.10 / Mw (monoisotopic mass): 38792.04]
93.4% of sequence covered (you ma	iy modify the input parameters to display also peptides < 500 Da or $> 100000000000000000000000000000000000$
Da):	
GOR-IV results for endopolygalactur	ronase of alternaria cepula
10 20 30 40 50 60	
MVALTLGIFFTSLAASAVAAPAPAT	IPAPKPEVVKRASSCIFSGSNGAAEASKSQSSCATMVLSDVAVPS
GTTLDLSSLADGTTVIFEGTTTWGYS	SEWKGPLLDIQGKKITVKGAEGSVLNGDGARWWDGKGGNGGKTKP
ccceeeecccccceeeeeeeeeeccccccchhhhc	ссееееессссеееесссссссссс
KFFSAHKLTDSTITGITIKNPPVQVVS	SINGCDGLTITDMTIDASDGDKDEQGHNTDGFDIGSSNNVTIDG
AKVYNODDCVAVNSGTFITFKNGL	CCEECCCCCCCCCCCCEEECCCCCEEECC CSGGHGLSIGSVGGRDDNTVDTVTESNSEVTKSVNGVRVKAKVGTT
eeeccccceeeecccceeeeeccccccceeeeeec	
GKINKVTYEDITLSEISKYGVLIEQN	YDGGDLHGDADTGVPITALTLDNVTGGVSSSGYDVVVTCGKGSC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	UCUCLEEEeeeccccccccccceeeeeeeccccc SVTKCS
cceeeeeeccccccccccccceeeec	
Sequence length: 379	
GOR4: Alpha haliy (IIb): $21 = 5.540$ / 2	haliy (G_{α}) , $O_{i\alpha} = O_{i\alpha} = O_{i\alpha} = O_{i\alpha} = O_{i\alpha} = O_{i\alpha} = O_{i\alpha}$
Approximation (HD): 21 IS 5.54% 3_{10} Beta bridge (Bb): 0 is 0.00% Exte	nded strand (Ee) : 137 is 36.15%

4	K30	Al
Tmnre	d results	

Possible transmembrane helices

The sequence positions in brackets denominate the core region.

AITPA PKPE VVKRA

Only scores above 500 are considered significant.

Inside to outside helices: 5 found from to score center

1 (1) 21 (18) 1934 9 61 (67) 93 (87) 234 77 230 (230) 248 (248) 139 238 320 (320) 339 (337) 65 329 330 (335) 353 (353) 42 343

8

K141

GGKTK PKFF SAHKL

0.26

Outside to inside helices : 3 found from to score center

1 (1) 17 (17) 1624 9 76 (76) 98 (95) 74 86 319 (319) 345 (337) 167 329

0.61

2.) Table of correspondences

Insilico studies and molecular modelling of food enzymes

Here is shown, which of the inside->outside helices correspond to which of the outside->inside helices. Helices shown in brackets are considered insignificant. A "+"-symbol indicates a preference of this orientation. A "++"-symbol indicates a strong preference of this orientation. inside->outside | outside->inside 1- 21 (21) 1934 ++ | 1- 17 (17) 1624 (61- 93 (33) 234 +) |(76- 98 (23) 74) (230- 248 (19) 139 ++) | (320- 339 (20) 65) |(319- 345 (27) 167 +) (330- 353 (24) 42 ++) |

2 possible models considered, only significant TM-segments used

----> STRONGLY prefered model: N-terminus inside

1 strong transmembrane helices, total score : 1934

from to length score orientation

1 1 21 (21) 1934 i-o

----->alternative model

1 strong transmembrane helices, total score : 1624

from to length score orientation

1 1 17 (17) 1624 o-i

TMHMM RESULT

gi|13160919|dbj|BAB32924.1| Length: 379
gi|13160919|dbj|BAB32924.1| Number of predicted TMHs: 0
gi|13160919|dbj|BAB32924.1| Exp number of AAs in TMHs: 3.20296
gi|13160919|dbj|BAB32924.1| Exp number, first 60 AAs: 3.20219
gi|13160919|dbj|BAB32924.1| Total prob of N-in: 0.14545
gi|13160919|dbj|BAB32924.1|TMHMM2.0 outside 1 379
ppmtogif: computing colormap... ppmtogif: 5 colors found

SOUI

Total length : 379 A. A.

79 A. A. Average of hydrophobicity : -0.155673

This amino acid s	equer	nce is of a M	IEMBRANE PROTEIN	which h	ave 1 trans	membrane h	elix.
	No.	N terminal	transmembrane region		C terminal	type	length
	1	3	ALTLGIFFTSLAASAVAA	PAPAI	25	PRIMARY	23

PAIRWISE SQUENCE ALIGNMENT

BLAST results

Putative conserved domains have been detected, click on the image below for detailed results.

C. DOUGHEESS COMPANY AND AND A SUBJECT AND AND A SUBJECT A	-	-		A 141 1	and all and and a													
Control Automatic Control State And Annual Annual Control Cont	104	204	10% J	je136 i	17% 1HL.6								26.0	100		1000	and a state	Contractor 1
D subber and autoattationary Direct tapents 74000 - ab075200730 Parts land	404	404	94% 0	i+136 f	SPN DELETHIC							L1 ELECTRONIC CONTRACTOR CONTRACTOR AND	383	303	34%	10.127	2010 2	SOLARS .
C esthematedeman Diseast a test NCEC (200	402	412	895. 2	with i	ETN GAMEIZZE		Mar 1	nai Qu		Alter 1		E) estimotypological delayers and statistical statisticae statisticae statisticae statisticae statisticae stati	363	365	37%	20127	81% 5	ANO REFE
C Reduces Sub-Folgers and a destaction of A Africa, Sub-Pactoria A African	40	40	85.7	In 135 1	SEN PRINTS	Decognes			-	1001	Accession	L1 minocrawich.orana.h.itelystera.hanmaoit	367	942	0/5	39-1-01	MTN S	Section 2
C antendarbertrans Jumparent automs Franciscos atamética ACC 10000 - automatica	40	402	10% J	h.196	CON HE MOMETTERS	C) entre also also descente alternation alternation	752	10 10	26 0.0	100%	Antitution in the second secon	LT KORDERANDARENDA KERMENIA LANKARE HERETAN STOLEN HARENDAREN	7 305	362	00%	ap-127	30% 2	ANDALL
D association association and the formulated behaviorable total contribution of	40	10	Sec. 1	1.176	and the set of the set	E) instantastatutasis (etc.) in the contract of the contrac	747	147 13	76.30	-	ACT 23122.1	D entropygalachemians C. Sutvetters Label and high-swift(CTT) endrapological achemical	1 300	300	02%	1+125	20% 6	AC24251
D and a state of the state of t	-	20			the backtority	C emperate America America and	748	NE 10	76 0.0	20%	Red VINILL	E extendénaiecheorane 3, Retwitten Andrei adal	390	300	02%	3+125	00% 8	2,681231,69,2
C energy and a second s	-			A 1.45	sen and and and a	C administration control and a set of the se	822	122 · 14	% 00	71%	MAGERREN.	Endiana Fair Calabaratera and FO. Atlana. Net Fair and Fair Ann. Parato	g 390	360	275	2+125	50% 5	1820381
CO Instructuration C. Research Lander CRUSTINE STREET RELEVANCE APPLE	401	4.1		#121.1	the in mountain	C emaintenaie Dimminia instant salentical constantenaie Dahum	123	R2 94	8 55	21%	960258333	D Builders, Falefoldstechtering, Stade 70, Alberts, Falefold, Fales, Faleton, Calefold, Faleton, Calefold, Stade 70, Alberts, Faleton,	390	360	30%	36-126	54% 2	180351
C sometersening interaction and an and a second and a second and a second and a second a se	300	200	80.3	#134 F	95% BRUILLI	Employ an experiment is a builden in the set of the William Control of the Second Con	\$21	121 10	W 30	75%	1214140121	El Redseni Falebrinessaieduceate E.Albieni, Edisbatica B.Albiene, Falebrine	379	379	89%	3+125	69% 5	208526.3
Itariume Full-Probate endus/search/union 8. Albume Full-Pachage 8. Albume	399	309	69% 3	Je134 F	STN SIDNELL	D ans a state to reason to the control of a control of a state of the control	\$15	Cris (4	6 14.09	71%	EPER2HAA	El Insertado al anticio ACL. SOROLTURZZ INTRODURS ADADASA ATCC. 248221	379	379	37%	1+125	99% ş	10402040-1
International Technologies (Incole 21) and the Proceeding of Control of Co	.310	310	NS 2	le123 1	NON DHEASTINY	D Instation of the American Comparison of the International Control of Control (1997) 111-1115 (2017) 2017 (201	405	495 DA	\$ 2+17	70%	AP DEBACORI.1	E extentesteduorate Consensation marc CR0 h11080 - sepP202131 (POLR1 A0256)	327	377	96%	3+125	60% J	P.101309521
D Interview automatic mass Properties Accounts (CEE read/ANCELED/SA.A.D	30	397	976 2	in 133 1	WN 10.70AML1	To teacher and the control of the co	450	60 94	5 14:00	07%	CHILINGLE.	D Britania Establistication providente 20170, Atlanta Tubi Parlinaia, Factor Providen	376	376	30%	41-125	175	1002161
C and an instantian and a market a market and a market	36	315	50% 7	de titz i f	EP% 646721621	C) abaseliki turkatana jeruni SK. Chehanarma resolal GMK. Al	400	** *	5 34.107	100	EURSLAIS.1	The state of th	375	375	21%	78-125	12% 2	AMTITURE 1
C address and an and a statements and an interface species of the State of the Stat	214	214	875. 7	A-122 -	10% E3247818.1	D bedretowarder/200.004.0aster.ansatzh.fat100	439	40 94	% 2+909	00%	EDUC PROLE	III and a colocation for the second structure and a second structure (1983) - colocation 204 (1) and a colocation	376	378	215	8+125	825. 7	P 0318008203
C and an and a statement of the statement of th	385	202	10%	Sec. 121	SPAL DAUGTER BILL	C) advances tradinated forms 20 across 20 strategies are as 2008.00	400	400 . 97	5 6+70	0%	Emulation.t	The Section Sub-Antida extrementation and External State	100	395	47%	ta.th	449. (TRANT
O entrantementer Panettan as CORCC 1102	392	312	00% 7	l=131 ·	SON MUSICIAL	C Sector and a sec	-	66 0 66 0	5 14-100 5 1-107	10%	CONTRACTOR S	D Performent all-Companyations and the All-Performance Full-Performance Faces France	375	375	91%	20-124	40% 5	STOTES 1
C entrantementerman bietera tantantal	312	312	10% 1	Se-121 - F	90% BH0721321	C sector carbon Phil Martin Sector Statement (1998)	40	601 10	K 4+ 165	10%	Enurgement.	Diservice Constant Devices of The Proceeding of the Proceeding of the Constant And Its of	1 173	373	30%	3+124	90% J	6.505
C Exclusion Full-Paleariest and a District Polit When a Full-Performent Floor Per-	210	30	01%. 7	l+130	IN SHEEKI	D teaching animal 2022 MULTINING antimeters Pro10	401	401 00	5. 6+ 10	10%	or second	El antesentasiste Paul Repealus senete E0100	374	374	30%	de124	54% S	5440/1322 h
C estationated annual Charles laved	20	20	20% 1	Je 130 - F	WN CADURIT.	D textilation and sectors PT1 101 bit Promotions level 1 level & 11 years 101 bit Val. 11 handler	478	RE 54	N. 6+ 903	77%	IF DESIGNAL	C ennocésaischentese areares Koletecturi valitive, sebuard	373	373	00%	6+124	50% 8	BLEI5331
C answering the state of the second s	300	300	-	Au 130	1.07.101198.170.1	C Anna and Andreases, Servin, 26 and an 27 of some ray, Alexandra, M. 200 and	473	15 19	5.74.58	66%	Ever Telefort	D abcaside metriana frenis 28 protein (Thatineta Instanta 1979), 8128 - stateG070982.11	373	373	22%	7e-124	57% 2	P. ROJESTIIS.1
C POL Parenteen Automit-militat 1981 11 Engenmenterpress 1 Parenteen Auto-	380	200	an. 1	In LIN A	IN APRILIATES	C entremeteduruses Chiledemetedeeuti	475	45.9	% 1±103	07%	GINEEDALD.	III Intrasticios areas astroneira formanes, asoletre Promotiva Away (VEB), 22571 + ap0016172	2 372	372	36%	1e-125	55% 7	P00337546533
Contraction of the second state of the second	346	10.	-	Au 120 1	176 MP 000000075.1	D sobsendorment Passifier aucheid	474	874 10	76 5e 163	59%	MR010221.2	El advancember aufstantermann, anderes Deservation, Constant NETT, 10 - and CONSTRUCT	1. 3/2	372	97%	26-123	57% 2	P-001372220:1
20 and and a second second second	-	-	-	- 178	Max Association 1	Attist of size primaries being a solid in Transactions (Action 1977), 121(-path/2)(4), 12	813	123 (9)	5 56.933	1.68%	10,001264035.1	El Establisher and an annual Macanin 54 (201) (and CAMOUT 117) 2042	1% 2	371	91%	4+123	57% 1	P. 0020454281
C THEFT AND DE LOTHERT AND DE	-		(mail)	ered. 3	and the state of t	D http://documenter.com/burgetai.temaka.NDD::seG49830_UEX2_GE	472	172 (9)	5 2+10	6%	3P. (1938) 1	El entracesanta locata C. Materialia Locata R843 - sal? 3131 370, R8 83704 Mat.	1 370	370	96%	6+123	50% r	P 891820736-3
						D adaba ale colas faitemas bein 28 actives 7 parties constancion 740	- 15	42 91	% 24100	70%	LINNINGLI							

Multiple sequence alignment and phylogenetic analysis Scores Table

40 40 HS 2+19 65 E301273

Se	qA Name	Le	en(aa)	Len(aa)	Score		
1	cepulae	145	2	alternata	140	100	
1	cepulae	145	3	citriarbusti	154	100	
1	cepulae	145	4	perangusta	159	99	
2	alternata	140	3	citriarbusti	154	100	
2	alternata	140	4	perangusta	159	99	
3	citriarbusti	154	4	perangusta	159	99	
	• •						

Alignment

CLUSTAL W (1.82) multiple sequence alignment

cepulae VLSDVAVPSGTTLDLSSLADGTTVIFEGTTTWGYSEWKGPLLDIQGKKITVKGAEGSVLN 60 VLSDVAVPSGTTLDLSSLADGTTVIFEGTTTWGYSEWKGPLLDIQGKKITVKGAEGSVLN 60 alternata citriarbusti VLSDVAVPSGTTLDLSSLADGTTVIFEGTTTWGYSEWKGPLLDIQGKKITVKGAEGSVLN 60 VLSDVAVPSGTTLDLSSLADGTTVIFEGTTTWGYSEWKGPLLDIQGKKITVKGAEGSVLN 60 perangusta *********** GDGARWWDGKGGNGGKTKPKFFSAHKLTDSTITGITIKNPPVOVVSINGCDGLTITDMTI 120 cepulae GDGARWWDGKGGNGGKTKPKFFSAHKLTDSTITGITIKNPPVQVVSINGCDGLTITDMTI 120 alternata GDGARWWDGKGGNGGKTKPKFFSAHKLTDSTITGITIKNPPVQVVSINGCDGLTITDMTI 120 citriarbusti GDGARWWDGKGGNGGKTKPKFFSAHKLTDSTITGIAIKNPPVQVVSINGCDGLTITDMTI 120 perangusta ******

cepulae	DASDGDKDEQGHNTDGFDIGSSNNV 145
alternata	DASDGDKDEQGHNTDGFDIG140
citriarbusti	DASDGDKDEQGHNTDGFDIGSSNNVIIDGAKVYN 154
perangusta	DASDGDKDEQGHNTDGFDIGSSNNVIIDGAKVYNSSNNV 159

Fig 27.Wire frame model of Pectinase in Alternaria cepulae

Fig 30.Spacefill model of Pctinase fromAlternaria cepulae

Fig 33.Strands of Pectinase from Alternaria cepulae

Fig 28.Backbone of Pectinase from Alternaria cepulae

Fig 31.Ball and stick model of Pecinase in Alternaria cepulae

Fig 34.Cartoons of Pectinase in Alternaria cepulae

Fig 28. Backbone of Pectinase Alternaria cepulae

Fig 32.Ribbon model of Pectinase inAlternaria cepulae

Fig 35 Molecular surface of Alternaria cepulae

Discussion

From the above picture the Pectinase produced from the Alternaria cepulae have 6 number of chains,670 number of groups 4918 number of atoms,64 bonds,8 helices,43 strands,zero number of turns and 5036 number of bonds

The Local Pairwise Alignment of Two Sequences

Here below, the classical text representation of a pairwise alignment of two sequences (THIO_ECOLI and PDI_ASPNG). This alignment was obtained with the Smith-Waterman algorithm, a BLOSUM62 similarity matrix and (-11/-1) for gap opening and

37.5% identity in 80 aa overlap; score: 122

20 30 40 50 60 THIO_ECOLI SFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQ-----GKLTVAKLNIDQNP

PDI_ASPNG SYKDLVIDNDKDVLLEFYAPWCGHCKALAPKYDELAALYADHPDLAAKVTIAKIDATAND 370 380 390 400 410 420

The amino acids of the query sequence (THIO_ECOLI) are represented using the grayed residues at the top of the grayed background histogram. Hence the full length of the query sequence is shown.

The local alignment of PDI_ASPNG on the query is represented by the sequence in black. The "+" signs at both ends of the aligned sub-sequence indicate that the alignment is local on PDI_ASPNG (the symbols "<" and ">" can be used to tag sequence extremities).

The Smith-Waterman score (122) is proportional to the sum of the areas of the red, blue and orange rectangles. The areas of the rectangles located below the aligned sequence are negative.

The area of every red rectangle corresponds to the score attributed by the similarity matrix to an observed pair of amino acids. The underlying gray rectangles represent the maximal score possible at every position of the query, which correspond to the diagonal elements of the similarity matrix in this example.

Two gaps are present in this example. The first one is an insertion (relative to the query) and is represented with lowercase letters. The second one is a deletion (relative to the query) and is represented with "-".

The cost of a gap is proportional to the sum of the areas of the adjacent blue and yellow rectangles. The area of the two blue rectangles represent the "gap existence" cost which is equally divided into an opening and a closing penalty. The orange rectangles represent the costs for extending the gap.

Alignment of a Sequence on a Profile

The pairwise alignment below corresponds to the one obtained when the PDI_ASPNG sequence is searched with the THIOREDOXIN_2 profile. For the sake of the textual representation, the profile positions were symbolized by the residues of the "consensus" sequence of the multiple sequence alignment from which the profile was derived. This alignment is not fundamentally different from the one considered before

consensus 1 XVXVLSDENFDEXVXDSDKPVLVDFYAPWCGHCRALAPVFEELAEEYK----DBVKFVKV -48

PDI_ASPNG 360 PVTVVVAHSYKDLVIDNDKDVLLEFYAPWCGHCKALAPKYDELAALYAdhpdLAAKVTIA -97

PDI_ASPNG 420 KID-ATANDVPDPITGFPTLRLYpaGAKDSPIEYSGSRTVEDLANFVKE -49

but the textual representation does not reveal the additional information carried on by the profile scoring system, that eventually makes the identification by the profile so "informative". The alternative graphical representation of this alignment reveals much of this extra information.

In strong contrast to the previous example, the scoring system is heavily position-dependent: The area of every red rectangle corresponds to the score attributed by the profile for the presence of a particular residue at a particular position. The underlying gray rectangle represents the maximal score possible at that position. The amino acids of the profile consensus that might contribute the most to the profile score are represented in gray at the top of the background histogram. Three gaps are presented in this example. They score differently as the system of gap penalties is also position dependent in a profile. Two cysteines are found among the highest scoring residues of the above example. Actually they form the active site of thioredoxins. A proline residue, which is quite distant on the sequence, also rewards a particularly high score. Actually, this proline is spatially located close to the active site as shown on the figure below. Obviously, this is a case where the alignment of a sequence on a profile can provides indication for the possible function of selected residues.

Inference

Motifscan is a program for finding motifs in the given sequence. The above results significantly shows some the important motif, its functions and the family where the motifs belongs to which implies the protein sequence. The result also gave the post translational modification.

The beta strand of the given sequence in 13.69%

The beta turns of the given sequence in 3.09%

The coils of the given sequence in 38.85%

The output of above parameters values shows in a graphics display.

Inference

SOPMA predict secondary structure for 1ut9A and also it gives length, alpha helix, beta strand, beta turn, coils and the output of graphics display.

7. SignalP 3.0 Server - prediction results

Using neural networks (NN) and hidden Markov models (HMM) trained on eukaryotes

>P23665_GUNA_FIBSU Endoglucanase A - Fibrobacter succinogenes

SignalP-NN

Result:

The result implies that the given protein contain a signal sequence having a probe of 0.069mTP. From this result is noted that protein contain signal sequence having destination mitochondria.

MOD BASE Result

Cross-references		
Template Structure	e	
PDB DBALI	<u>1ut9</u> 1ut9A	cellulose 1,4-beta-cellobiosidase: catalytic domain, residues 208-816
Jena Image Library Target Sequence	<u>1ut9</u>	
SwissProt UniProt	<u>P23664</u> P23664	Endoglucanase A precursor (EC 3.2.1.4) (Endo-1,4-beta-glucanase)(Cellulase).
InterPro PFAM	P23664 P23664	

PRODOM SwissProt UniProt InterPro	P23664 P23665 P23665 P23665	Endoglucanase A precursor (EC 3.2.1.4) (Endo-1,4-beta-glucanase)(Cellulase).
PFAM PRODOM GenPept	<u>P23665</u> <u>P23665</u> <u>121804</u>	GUNA_FIBSU ENDOGLUCANASE A PRECURSOR (ENDO-1,4-BETA- GLUCANASE) (CELLULASE)

10. PFAM Result:

This is the summary of UniProt entry <u>GUNA_FIBSU</u> (P23665).

Description:	Endoglucanase A precursor (EC 3.2.1.4) (Endo-1,4-beta-glucanase)(Cellulase).				
Source organism:	Fibrobacter succinogenes (Bacteroides succinogenes). (NCBI taxonomy ID 833)				
	<u>View</u> Pfam genome data.				

Length: 453	3 amino acids		
			+
1	Gilger	o_hydro_9	
Source Domain PfamA <u>Glycohydro9</u> 11. cholorop Result:	Start End 29 445	24 A 0.130 0.091 25 L 0.078 0.094 230 A 0.190 -0.040	-2.509 -4.243 3.625 -2.597
CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS	ChloroP 1.1 Server - prediction results TechnicalUniversity of Denmark	231 K 0.203 -0.042 232 T 0.341 -0.021 233 A 0.208 0.048 234 Y 0.247 0.064 235 S 0.254 0.100 236 Y 0.157 0.145	-4.373 -5.670 -3.222 -1.432 -1.887 -9.659
### chlorop v1.1 pred ####################################	liction results ############ Jences: 1	237 A 0.124 0.133 238 K 0.077 0.090 239 S 0.075 0.051 240 H 0.094 0.000 241 K 0.172 -0.046	-1.196 -5.326 -3.058 -5.782 -11.904
score length		242 G 0.122 -0.036 243 V 0.140 -0.038 244 T 0.158 -0.014	-5.991 -7.535 -12.991
P23665_GUNA_FIB: 0.385 65		245 N 0.167 0.012 246 S 0.137 0.054 247 Q 0.126 0.069	-3.089 -6.739 -9.652
Detailed output		248 G 0.083 0.092 249 F 0.114 0.092	-2.020 -19.985
ResidueNN-score- Raw Deriv.	CS-score	250 Y 0.030 0.103 251 E 0.026 0.079 252 S 0.015 0.059	-16.891 -4.705 -13.327
Name: P23665_GUN	IA_FIBSU	253 S 0.028 0.055 254 W 0.014 0.028	-16.735
1 M 0.319 0.000	0.000	255 W 0.014 0.007	-8.607
2 N 0.293 0.000	0.000	256 D 0.015 0.005	-17.010
3 C 0.261 0.000	-9.099	257 G 0.021 0.003	-14.613
4 K 0.204 0.000	-11.993	258 R 0.011 0.007	-17.465
$5 \times 0.239 0.000$	-2.985	259 W 0.016 0.005	-12.809
7 I 0 178 0 084	-10.095	260 E 0.011 0.007	-19.027
8 L 0 150 0 068	-8 603	261 D = 0.010 = 0.008	-15.255
0 S 0 155 0 040	-7.414	262 C 0.009 0.008	-10.901
10 G 0 162 0 039	-1 941	264 E 0.006 0.006	-20.377
11 L 0 154 0 018	-12.483	265 L 0.005 0.004	-9.053
12 A 0.145 -0.020	-12.002	266 A 0.005 0.004	-2 694
13 V 0.150 -0.062	-5.568	267 E 0.004 0.002	-12.965
14 F 0.160 -0.094	-4.701	268 L 0.004 0.001	-4.778
15 G 0.188 -0.097	-4.365	269 E 0.005 0.000	-12.479
16 L 0.263 -0.102	-4.106	270 L 0.004 0.000	-9.483
17 A 0.326 -0.056	-2.711	271 Y 0.005 0.000	-12.199
18 A 0.300 0.022	1.457	272 R 0.004 0.000	-4.310
19 T 0.178 0.084	0.796	273 T 0.005 0.000	-5.509
20 S 0.238 0.097	-4.836	274 T 0.004 -0.002	-8.646
21 A 0.145 0.139	1.273	275 G 0.004 -0.002	-6.838
22 V 0.117 0.130	-1.799	276 E 0.004 -0.002	-5.341
23 A 0.139 0.100	2.960	277 N 0.007 -0.002	-6.701

278 S 0.012 -0.001	-10.728	367 L 0.346 -0.020	-8.458
279 Y 0.005 0.002	-11.997	368 Y 0.396 0.063	-8.627
. 300 F 0.191 -0.002	-6.305	369 A 0.255 0.177	-5.931
301 M 0.065 0.046	-16.878	370 L 0.298 0.191	-8.411
302 Y 0.120 0.040	-2.646	371 S 0.202 0.235	-3.758
303 S 0.090 0.045	-5.758	372 D 0.149 0.234	-9.527
304 N 0.072 0.041	-14.206	373 K 0.050 0.213	-11.141
305 V 0.084 0.032	-7.193	374 F 0.036 0.148	-11.217
306 V 0.081 0.021	-11.649	375 N 0.051 0.107	-11.016
307 P 0.128 0.037	-8.298	376 N 0.043 0.062	-12.559
308 L 0.044 0.058	3.668	377 T 0.053 0.034	-10.016
309 S 0.039 0.054	-2.246	378 N 0.030 0.023	-14.476
310 A 0.032 0.053	5.602	379 E 0.024 0.023	-6.868
311 V 0.018 0.047	0.172	380 H 0.029 0.023	-12.811
312 M 0.031 0.037	-3.748	381 M 0.024 0.022	-7.634
313 A 0.020 0.023	9.437	382 E 0.012 0.020	-2.133
314 E 0.011 0.021	-4.202	383 M 0.011 0.012	-8.257
315 A 0.007 0.017	-4.646	384 I 0.012 0.009	-7.508
316 V 0.006 0.013	-8.311	385 E 0.011 0.008	-5.092
317 F 0.005 0.010	-4.336	386 K 0.012 0.004	-13.414
318 E 0.005 0.005	-5.737	387 N 0.011 0.002	-19.305
319 E 0.004 0.002	-12.829	388 V 0.007 0.002	-5.592
320 T 0.004 0.001	-12.998	389 S 0.008 0.001	-8.750
321 P 0.005 0.000	-18.230	390 Y 0.011 -0.001	-6.387
322 H 0.006 0.000	-0.877	391 L 0.012 -0.001	-11.895
323 G 0.004 0.001	0.421	392 L 0.008 -0.001	-10.552
324 M 0.004 0.001	-16.010	393 G 0.009 -0.003	-1.033
325 R 0.004 0.001	-11.684	394 D 0.012 -0.003	-7.692
326 K 0.004 0.001	0.024	395 N 0.013 -0.002	-9.534
327 E 0.004 0.000	-10.103	396 G 0.014 -0.002	-3.973
328 A 0.004 0.000	-7.551	397 S 0.013 0.000	-15.754
329 1 0.004 0.000	-18.596	398 K 0.011 0.000	-10.130
330 G 0.004 0.000	-17.050	399 K 0.012 -0.001	-1.166
331 V 0.004 0.000	-15.200	400 S 0.014 -0.004	-9.159
332 L 0.004 0.000	-10./81	401 Y 0.008 -0.011 402 V 0.018 0.017	-8.042
335 D 0.004 0.000	-3.636	402 V 0.018 -0.017 402 V 0.016 0.026	-7.425
334 L 0.004 0.000	-0.313	403 V 0.010 -0.020 404 G 0.027 0.074	-0.970
336 V 0.004 0.000	-10.881	404 G 0.027 -0.074 405 E 0.050 -0.128	-3 273
337 F 0.004 0.000	1 347	406 \$ 0.033 -0.120	-9.450
338 E 0.004 0.000	-6.093	400 B 0.055 0.210 407 K 0.066 -0.331	-6 144
339 K 0.004 0.000	-12 203	408 N 0.261 -0.443	-6 554
340 A 0.004 0.000	-12.895	409 G 0.314 -0.493	-2.113
341 K 0.004 -0.001	-9.088	410 A 0.496 -0.509	-5.342
342 D 0.004 -0.003	-5.093	411 N 0.661 -0.443	-13.495
343 K 0.004 -0.004	-20.862	412 A 0.677 -0.351	-3.044
344 I 0.005 -0.005	-12.479	413 P 0.754 -0.253	-15.521
345 F 0.008 -0.006	-11.036	414 S 0.683 -0.173	-13.193
346 Q 0.013 -0.005	-9.247	415 R 0.611 -0.124	-6.747
347 N 0.010 -0.005	-9.502	416 P 0.828 -0.148	-3.655
348 P 0.007 -0.008	-13.701	417 H 0.797 -0.116	-15.866
349 N 0.011 -0.015	-5.944	418 H 0.848 -0.090	-13.042
350 G 0.010 -0.026	-1.279	419 R 0.807 -0.028	-10.058
351 M 0.022 -0.034	-15.129	420 G 0.847 0.018	-5.272
352 G 0.028 -0.046	-6.396	421 Y 0.832 0.126	-15.462
353 S 0.045 -0.063	-8.480	422 Y 0.787 0.218	-8.415
354 G 0.072 -0.085	-13.402	423 A 0.633 0.304	-3.708
355 K 0.052 -0.100	-12.449	424 N 0.701 0.332	-7.305
356 F 0.091 -0.110	-13.361	425 E 0.543 0.408	-11.534
357 P 0.131 -0.100	-12.041	426 K 0.376 0.443	-15.151
358 V 0.196 -0.080	-6.216	427 R 0.349 0.420	-14.359
359 R 0.206 -0.045	-6.591	428 W 0.279 0.396	-9.030
360 V 0.145 -0.057	2.188	429 R 0.211 0.370	-14.699
361 P 0.112 -0.075	-11.888	430 R 0.066 0.311	-7.581
362 S 0.130 -0.122	-7.147	431 S 0.035 0.226	-7.550
363 G 0.172 -0.165	-4.715	432 R 0.030 0.163	-14.785
364 G 0.403 -0.215	-13.443	433 R 0.054 0.104	-4.654
365 A 0.326 -0.146	-11.599	434 C 0.019 0.069	2.204
366 F 0.368 -0.104	-16.571	435 S 0.012 0.034	-4.641

436 E 0.010 0.025	3.594	sequence was subjected to similaritysearch against Protein
437 S 0.005 0.021	-1.691	Data Bank, using the BLAST tool offered by NCBI. Later,
438 S 0.004 0.016	-5.208	the templates were selected on the basis of structural
439 R 0.004 0.006	-11.112	hitsand its alignment pattern against the query sequence.
440 K 0.004 0.003	-5.325	The selected templates were as follows: chain A of 1GYC
441 E 0.004 0.001	-5.809	chain A of 3KW7 and chain A of to 1V10
442 Q 0.004 0.000	-2.842	The advanced modelling tutorial package offered in
443 A 0.004 0.000	-10.970	MODELLED and stilling future package offered in
		MODELLER was utilized for comparative molecular
End		modelling. The DOPE scorebelonging to the best modeled

Molecular modelling of laccase

The sequence of Laccase was retrieved from Universal ProteinResource (UniProt) and its corresponding sequence id was P51589. Itconsists of 529 amino acids. This

PROCHECK RESULT

structure was -60304.7734. The stereo chemistry qualities of the structures were validated with PROCHECK[37] structural validation tool. PROCHECK results clearly indicated the higher fidelity of modeled Laccase structure .

Active site analysis

407 O TRP A 90 , 418 N LYS A 91 669 C GLY A 124 , 671 N THR A 125 678 N ASN A 126 , 686 N GLY A 127 690 N GLY A 128 , 694 N LYS A 129 703 N THR A 130 , 710 N LYS A 131 719 N PRO A 132 , 726 N LYS A 133 912 CB VAL A 155

Laccase

Alternaria alternata [gbpln]: 56 CDS's (24785 codons)

AmAcid Codon Number /1000 Fraction									
Gly	GGG	215.00	8.67	0.00	Gly	GGA	424.00	17.11	0.00
Gly	GGT	483.00	19.49	0.00	Gly	GGC	630.00	25.42	0.00
Glu	GAG	890.00	35.91	0.00	Glu	GAA	556.00	22.43	0.00
Asp	GAT	565.00	22.80	0.00	Asp	GAC	877.00	35.38	0.00
Val	GTG	267.00	10.77	0.00	Val	GTA	230.00	9.28	0.00
Val	GTT	486.00	19.61	0.00	Val	GTC	675.00	27.23	0.00
Ala	GCG	358.00	14.44	0.00	Ala	GCA	482.00	19.45	0.00
Ala	GCT	701.00	28.28	0.00	Ala	GCC	755.00	30.46	0.00
Arg	AGG	166.00	6.70	0.00	Arg	AGA	194.00	7.83	0.00
Ser	AGT	181.00	7.30	0.00	Ser	AGC	398.00	16.06	0.00
Lys	AAG	920.00	37.12	0.00	Lys	AAA	325.00	13.11	0.00
Asn	AAT	289.00	11.66	0.00	Asn	AAC	595.00	24.01	0.00
Met	ATG	530.00	21.38	0.00	Ile	ATA	237.00	9.56	0.00
Ile	ATT	383.00	15.45	0.00	Ile	ATC	676.00	27.27	0.00

Thr	ACG	273.00	11.01	0.00	Thr	ACA	343.00	13.84	0.00
Thr	ACT	370.00	14.93	0.00	Thr	ACC	514.00	20.74	0.00
Trp	TGG	302.00	12.18	0.00	End	TGA	14.00	0.56	0.00
Cys	TGT	184.00	7.42	0.00	Cys	TGC	304.00	12.27	0.00
End	TAG	16.00	0.65	0.00	End	TAA	26.00	1.05	0.00
Tyr	TAT	229.00	9.24	0.00	Tyr	TAC	393.00	15.86	0.00
Leu	TTG	356.00	14.36	0.00	Leu	TTA	109.00	4.40	0.00
Phe	TTT	308.00	12.43	0.00	Phe	TTC	634.00	25.58	0.00
Ser	TCG	330.00	13.31	0.00	Ser	TCA	289.00	11.66	0.00
Ser	TCT	433.00	17.47	0.00	Ser	TCC	425.00	17.15	0.00
Arg	CGG	156.00	6.29	0.00	Arg	CGA	239.00	9.64	0.00
Arg	CGT	277.00	11.18	0.00	Arg	CGC	289.00	11.66	0.00
Gln	CAG	577.00	23.28	0.00	Gln	CAA	387.00	15.61	0.00
His	CAT	258.00	10.41	0.00	His	CAC	344.00	13.88	0.00
Leu	CTG	418.00	16.87	0.00	Leu	CTA	244.00	9.84	0.00
Leu	CTT	496.00	20.01	0.00	Leu	CTC	585.00	23.60	0.00
Pro	CCG	249.00	10.05	0.00	Pro	CCA	274.00	11.06	0.00
Pro	CCT	348.00	14.04	0.00	Pro	CCC	304.00	12.27	0.00

Compute pI/Mw

Theoretical pI/Mw (average) for the user-entered sequence:

6<u>0</u> 7<u>0</u> 10 20 3<u>0</u> 40 80 90 100 11<u>0</u> 12050 MKSFSILGAA LFGLFAPVAI AAAIPAELAE LAPFTPIRDS LEERQSPASC VNVGNTATTR HCWAPGFTSS TDMYTSWPNT GVVRSYNLRI ENTTCNPDGA GSRVCMLING RYPGPTIVANWGDTIRVTVR NLLQANGTSI HWHGFRMLNK NIQDGVNGIT ECALAPNDVK TYEFQATEYGTTWYHSHFSH QYGDGVVGTV IVNGPATANY DEDLGVMPIT DWYYQTAYQA ASIAFQNGQGLGPPVGDNI LINGTAKNAA GGGAWNNVKI QAGKRYRLRL VNTAVDTNMV VNLDGHPFQV IATDFVPINP YNTSHLOIGI GORYDVIITA NOTAGNYWFR AVADGLCOSR NTREGRAVFTYOGOTVADPT SNSTAIPFTE CVDPVTSPKI AKNVPSTTFA AQAKSLPVAF GPVAANGNTV LWTINGTSMI IDPGKPTIKY VAETNNSFPQ SYNVVEVPST SASTWSYWVV QQAVGAPPLAHPIHLHGHDS YVLGAGDGQF NVSTHFSQLR FTNPPRRDVT QLKKNGWLVL AYPTDNPGAW LMHCHIAFHV GMGLSVQFLE RKQSINLPAP GSEWYGNCNK WASYKAGTTD IWPQDDSGLK KRWPPLIEGG STFRLD Theoretical pI/Mw: 6.96 / 66922.21

ProtParam

Laccase {ECO:0000313|EMBL:OAG13331.1}

Alternaria alternata (Alternaria rot fungus) (Torula alternata).

The computation has been carried out on the complete sequence (616 amino acids).

Number of amino acids: 616 Molecular weight: 66922.21

Theoretical pI: 6.96

Amino acid composition

Ala (A) 59	9.6%	Arg (R) 24	3.9%	Asn (N) 45	7.3%		
Asp (D) 27	4.4%	Cys (C) 9	1.5%	Gln (Q) 27	4.4%		
Glu (E) 16	2.6%	Gly (G) 55	8.9%	His (H) 16	2.6%		
Ile (I) 34	5.5%	Leu (L) 36	5.8%	Lys (K) 18	2.9%		
Met (M) 9	1.5%	Phe (F) 23	3.7%	Pro (P) 41	6.7%		
Ser (S) 37	6.0%	Thr (T) 53	8.6%	Trp (W) 17	2.8%		
Tyr (Y) 23	3.7%	Val (V) 47	7.6%	Pyl (O) 0	0.0%		
Sec (U) 0	0.0%	(B) 0	0.0%	(Z) 0	0.0%		
(X) 0	0.0%						
Total number of negatively charged residues (Asp + Glu): 43							

Total number of positively charged residues (Arg + Lys): 42

Atomic composition: Carbon C 2994 Hydrogen H

Nitrogen	Ν		827	Oxygen	0	888
Sulfur	S	18				

Formula: C₂₉₉₄H₄₅₅₇N₈₂₇O₈₈₈S₁₈ **Total number of atoms:** 9284

Extinction coefficients:

Extinction coefficients are in units of M^{-1} cm⁻¹, at 280 nm measured in water. Ext. coefficient 128270

4557

Abs 0.1% (=1 g/l) 1.917, assuming all pairs of Cys residues form cystines

Ext. coefficient 127770

Abs 0.1% (=1 g/l) 1.909, assuming all Cys residues are reduced

Estimated half-life:

The N-terminal of the sequence considered is M (Met).

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro).

>20 hours (yeast, in vivo).

>10 hours (Escherichia coli, in vivo).

Instability index:

The instability index (II) is computed to be 34.80 This classifies the protein as stable. **Aliphatic index:** 76.02

Grand average of hydropathicity (GRAVY): -0.218

SOPMA result for : UNK_347730

10 20 30 40 50 60 70

 $DEDLGVMPITDWYYQTAYQAASIAFQNGQAGLGPPVGDNILINGTAKNAAGGGAWNNVKIQAGKRYRLRL\ cctttcccccchhhhhhhhhhheehtttttccccccceeeetcccceeeetccceeeet$

 $VNTAVDTNMVVNLDGHPFQVIATDFVPINPYNTSHLQIGIGQRYDVIITANQTAGNYWFRAVADGLCQSR\\ eehcccteeeeeettcceeeeeeecccccccceeeeeeecctttceeeehhtthhhcc$

NTREGRAVFTYQGQTVADPTSNSTAIPFTECVDPVTSPKIAKNVPSTTFAAQAKSLPVAFGPVAANGNTVCcttcceeeeettceeccccccccccccccccccccchhhhhtccceeecccctttcee

RKQSINLPAPGSEWYGNCNKWASYKAGTTDIWPQDDSGLKKRWPPLIEGGSTFRLD

Ttccccccccccccchhhhcttceeeccccttcccccccttceeeec

Sequence length: 616 SOPMA:

Alpha helix (Hh) :93 is 15.10% 310helix(Gg) :0 is 0.00% Pi helix(Ii):0 is 0.00 Beta bridge (Bb) : 0 is 0.00% Extended strand (Ee) : 187 is 30.36% Beta turn (Tt) 73 is 11.85% Bend region (Ss) : 0 is 0.00% Random coil (Cc) : 263 is 42.69% Ambiguous states (?) : 0 is 0.00 Other states :0 is 0.00% Parameters : Window width : 17 Similarity threshold : 8 Number of states 4

ScanProsite Results Viewer

Ouput format: Graphical view - this view shows ScanProsite results together with ProRule-based predicted intra-domain features.

Hits for all PROSITE (release 20.129) motifs on sequence A0A177D1J9 [UniProtKB/TrEMBLfound: 2 hits in 1 sequence

<u>A0A177D1J9</u> **A0A177D1J9_ALTAL** (616 aa)

 SubName: Full=Laccase {ECO:0000313|EMBL:OAG13331.1};
 Alternaria alternata (Alternaria rot fungus) (Torula alternata)

MKSFSILGAALFGLFAPVAIAAAIPAELAELAPFTPIRDSLEERQSPASCVNVGNTATTRHCWAPGFTSSTDMYTSWPNTGVVRSYNLRIENTTCN PDGAGSRVCMLINGRYPGPTIVANWGDTIRVTVRNLLQANGTSIHWHGFRMLNKNIGVNGITECALAPNDVKTYEFQATEYGTTWYHSHFSHQ YGDGVVGTVIVNGPATANYDEDLGVMPITDWYYQTAYQAASIAFQNGQAGLGPPVGDNILINGTAKNAAGGGAWNNVKIQAGKRYRLRLVN TAVDTNMVVNLDGHPFQVIATDFVPINPYNTSHLQIGIGQRYDVIITANQTAGNYWFRAVADGLCQSRNTREGRAVFTYQGQTVADPTSNSTAI PFTECVDPVTSPKIAKNVPSTTFAAQAKSLPVAFGPVAANGNTVLWTINGTSMIIDPGKPTIKYVAETNNSFPQSYNVVEVPSTSASTWSYWVQ QAVGAPPLAHPIHLHGHDSYVLGAGDGQFNVSTHFSQLRFTNPPRRDVTQLKKNGWLVLAYPTDNPGAWLMHCHIAFHVGMGLSVQFLERK QSINLPAPGSEWYGNCNKWASYKAGTTDIWPQDDSGLKKRWPPLIEGGSTFRLD

Fig 36:Wire frame model of Laccase Laccase

Fig 37 :Backbone model of Laccase

Fig 38 Sticks of Laccase

Fig. 44 Molecular Strand of Laccase

DISCUSSION

From the above picture the Laccase produced from the Alternaria cepulae have 2 number of chains,499 number of groups, 3806 number of atoms, 197 bonds, 13 helices, 31 strands, zero number of turns and 4107 number of bonds

REFERENCES

Ali, A.J., Ahmed, A.H., Zahraa, A. & Umar, A. (2011) Optimization of Cellulase Production by Aspergillus niger and Tricoderma viride using Sugar Cane Waste, Journal of Yeast and

Baldrian, P., Snajdr, J. (2006) Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme Microbiol Technol 39: 1023-1029.Fungal Research, 2(2), 19-23

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E. (2000) The protein data bank.Nucleic Acids Res 28:235-242

Pradeep, N.V., Anupama, Vidyashree, K.G., Lakshmi, P. (2012) In silico Characterization of Industrial Important Cellulases using Computational tool.Adv Life Sci Tech. 4:8-15.

Prashant, V.T., Uddhav, S.C., Madura, S.M., Vishal, P.D. and Renuka, R.K. (2010) Secondary StructurePrediction and Phylogenetic Analysis of Salt Tolerant Proteins, Global Journal of Molecular Sciences, 5 (1), 30-36.

Sali, A., Blundell, T.L. (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779-815

Spano, L., Medeiros, J., Mandels, M. (1975) Enzymatichydrolysis of cellulosic waste to glucose, pollution abatement DIV., Food SVCS. Labs. Us Army Natick, MA, USA, 7,

Whitaker, D.R. (1971) Cellulases. The enzymes, 5, 273-290.

Whitaker, H.A. and McAdam, Dale, W. "Language production: Electroencephalographic localization in the normal human brain." Science172.3982 (1971): 499-502.

Yoshida, F. and Mizusawa, K. (1976) Experimental suppliers, 26,61

Zhou, H. and Zhou, Y. (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11:2714-2726.