POSSIBILITIES FOR UTILIZATION OF WASTE PRODUCTS OF SERICULTURAL INDUSTRY IN ANIMAL/ POULTRY FEEDS

aFarhat Iqbal Qadri, S., aMalik M.A., bBanday, M.T., aBhat, S.A., 1Sharma, R.K.
1Temperate Sericulture Research Institute S. K. University of Agricultural Sciences & Technology of Kashmir Mirgund –Post Box No. 674, GPO Srinagar -190001, India
2Division of Live Stock and Production Management Faculty of Vet. Sciences and Animal Husbandry SKUAST-Kashmir

ABSTRACT
Proximate composition was conducted to investigate the nutrient quality of mulberry silkworm pupae and excreta. The results obtained on the chemical composition showed that silkworm pupae contained Dry matter 91.33%, Crude protein 61.25%, Ether extract 18.66%, Crude fibre 2.5%, Total ash 3.33%, Calcium 0.63%, Phosphorus 0.83% and the Silkworm excreta contained Dry matter 88.66% , Crude protein 18.15%, Ether extract 2.5%, Crude fibre 12.5%, Total ash 23.33%, Calcium 0.56%, Phosphorus 0.23%. The results on proximate composition of mulberry silkworm pupae and excreta shows that it could be incorporated in to the poultry feed.

KEY WORDS: Chemical composition, Mulberry silkworm pupae, mulberry silkworm excreta.

INTRODUCTION
The compelling need to harness the potentials of the numerous agro-industrial by-products and the so-called “Wastes” as part replacement for the more expensive conventional feed ingredients have been seriously expressed (Aletor,1986; onifade and Babatunde,1998). This need has arisen mainly from the increasing demand for and supply deficit of conventional feed resources with a concomitant sharp rise in their cost prices. The net effect of increasing unit cost of the conventional feed resources is increased cost of the compound rations which by extension gives rise to increased cost of meat and animal products. It becomes highly imperative that other sources for rapid livestock output to meet the growing human demand for animal protein foods to be sourced. Such other sources should be cheap and nutritionally adequate for feeding birds / animals with the aim of lowering cost of producing meat. One of such measures is the recycling of major reeling and rearing waste of sericulture industry i.e. Silkworm pupae (SWP) and silkworm excreta (SWE) as part replacement for conventional and expensive grains used in the live stock nutrition. Proper utilization of waste products of sericulture industry can also generate an extra income in addition to silk, the main output, which may also be considered as an alternative way to solve partly the problem with the decline of silk production and the efficient utilization of the existing sericulture human capacity, research and production facilities.

MATERIALS & METHODS
Collection and processing of material
For the present study the mulberry waste in the form of silkworm pupae meal was obtained from Himalayan silk reeling and weaving factory Mouchu Srinagar and silkworm excreta meal was obtained from the Temperate Sericulture Research Institute and silkworm farmers of village Chinabal, Pattan. The test materials were dried and stored appropriately for future use.

Proximate composition
The percentage crude protein, ether extract, total ash, crude fiber content of the silkworm pupae and excreta were determined as per standard procedure of Association of Official Analytical Chemists (AOAC, 2005). Calcium and phosphorus were estimated by Talapatra method (1948).
RESULTS & DISCUSSION
The results of chemical and mineral compositions of mulberry silkworm pupae and excreta are presented in Table -1. The values obtained of mulberry silkworm pupae (MSWP) for Dry matter, Crude protein, Ether extract, Crude fibre, Total ash Calcium and Phosphorus were 91.33%, 61.25%, 18.66%, 2.5%, 3.33%, 0.63%, and 0.83% respectively. The values obtained of mulberry silkworm excreta (MSWE) for Dry matter, Crude protein, Ether extract, Crude fibre, Total ash Calcium and Phosphorus were 88.66%, 18.15%, 2.5%, 12.5%, 23.33%, 0.56%, and 0.23% respectively.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Attributes (%)</th>
<th>Silkworm pupae</th>
<th>Silkworm excreta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dry matter</td>
<td>91.33</td>
<td>88.66</td>
</tr>
<tr>
<td>2</td>
<td>Crude protein</td>
<td>61.25</td>
<td>18.15</td>
</tr>
<tr>
<td>3</td>
<td>Ether extract</td>
<td>18.66</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>Crude fibre</td>
<td>2.5</td>
<td>12.5</td>
</tr>
<tr>
<td>5</td>
<td>Total ash</td>
<td>3.33</td>
<td>23.33</td>
</tr>
<tr>
<td>6</td>
<td>Calcium</td>
<td>0.63</td>
<td>0.56</td>
</tr>
<tr>
<td>7</td>
<td>Phosphorus</td>
<td>0.83</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Values represent mean of triplicate determination

The moisture content of silkworm pupae and silkworm excreta was found to be 8.67 and 11.34%, respectively. The crude protein content of Silkworm pupae was 61.25% and that of silkworm excreta was 18.15%. Ether extractable fat of silkworm pupae and silkworm excreta was 18.66 and 2.5% respectively. The crude fibre content of silkworm pupae was 2.5% and while silkworm excreta contained 12.5%. The ash content of silkworm excreta was at a higher level i.e., 23.33% while as it was lowest in silkworm pupae (3.33%). The content of calcium and phosphorus in silkworm pupae was 0.63 and 0.83%, respectively. The true crude protein content of Silkworm pupae was 8.05 and while silkworm excreta contained 3.20 per cent. The results of crude protein, crude fibre, moisture contents of silkworm pupae are in harmony with the results of Ahamad et al. (2000) who reported that Silkworm pupae contains 9.8% of moisture, 62.2% of crude protein, 7.6% of crude lipid, 1.3% of crude fibre, 17.2% ash. The results of ether extract are in harmony with the results of Choudry et al. (1990), who estimated the biochemical composition of silkworm pupae and found that per cent moisture, crude protein, crude fibre, total ash, calcium, phosphorus and ether extract as 6.13, 58.40, 4.76, 4.62, 0.10, 0.46 and 21.88 respectively. The results of phosphorus are corroborating with the results of Bora and Sharma (1965). They reported that calcium and phosphorous contents in silkworm pupae (Assam muga silkworm) as 0.26 and 0.80 per cent respectively. The results of crude protein, crude fat, Moisture contents of Silkworm excreta are harmony with the results of Chen Yaowang (2003) who reported that the nutrient composition of silkworm excreta was 12.2% moisture, 15.4% crude protein 2.6% crude fat, 19.6% crude fiber, 36.2% non-nitrogen extracts and 4.5% minerals. Wijayasinghe and Rajaguru (1977) reported that the proximate composition of silkworm pupae contains moisture 8.50%, crude protein 63.30%, crude fibre 3.10%, ash 4.50%, nitrogen free extract 1.13%, P₂O₅ 2.03, CaCO₃ 0.545. However, According to Panda (1968) The Silkworm Pupae contain 55% crude protein, 25% ether-extract and 3% crude fiber. Majaonkar and Bjambure (1987) reported that silkworm pupae contain 48.12% protein, 34.20% ether extract, 1.84% crude fiber, 11.40% nitrogen free extract and 4.44 per cent total ash on dry matter basis. Hossam et al. (2011) reported that the chemical analysis of silkworm excreta as 6.08% moisture, 93.92% dry matter,
24.67% ash, 1.9% either extract, 18.74% crude protein and 13.84% crude fiber. The variation in the chemical composition of silkworm pupae and silkworm excreta may be due to the race variation of silkworm (Bombyx mori), the leaf of different mulberry verities used during rearing of silkworms and also due to the difference in season.

CONCLUSION
It can be concluded that this study which evaluated the proximate composition of the major silk reeling waste (pupae) and silkworm rearing waste (excreta) has explored the practical possibility of incorporation of these two major silk industrial wastes in to Animal/ poultry feeds hence reducing the cost of production of feed consequently reducing the unit cost of animal products. Thus the proper utilization of these major waste products of sericulture industry can also generate an extra income in addition to silk the main output.

REFERENCES


