
I.J.E.M.S., VOL. 2(1)-2011: 15-19 ISSN 2229 -600X

15

SECURING WEB SERVICES

Ahmad Tasnim Siddiqui & Arun Kumar Singh
Research Scholar, Singhania University, Pacheri bari, Jhunjhunu Rajasthan, India

ABSTRACT
HTTP, Web Server and Web Services share very complicated set of functionalities and exchanges of information. Each
and every component plays very important role in the thousands of functions which any user can access and utilize over
Internet. Hyper Text Transfer Protocol allows users to interact with Web Servers and hence they can access the information
via the Internet. If any user requests data and files, Web servers serve them. Web Services allow cross-system, cross-
language communication among various types of machines and enable inter-business transaction and communications.
Although each technology works on its own and performs many useful functions, it is the combination of these
technologies that has created the dynamic functionalities of the Web that are available today. This research paper will
explore the inter-relationships between HTTP, Web Servers and Web Services technologies that have facilitated the
functionalities and convenience of the Web.
Web Services are very powerful tool that has greatly enhanced the efficiency and communication among businesses.
According to the World Wide Web Consortium (W3C), “a Web Service is a software system designed to support
interoperable machine-to-machine interaction over a network.” According to Zeldman, Web Services are a “reusable
software components based on XML and related protocols that enable near zero-cost interaction throughout the business
ecosystem.” In other words, Web Services are the software system that allows servers and client computers to
communicate with each other regardless of each individual machine’s environment (operating systems and programming
languages). The Extensible Markup Language (also popularly known as XML) page provides a very nice formula that
clearly defines the major components of Web Services. According to Simon, Web services = XML + SOAP + WSDL +
UDDI.
There are only two reasons for the need to secure a Web Service. First, the data it serves is sensitive in some way – it all
needs to be locked away from any un-authorized access, or only certain users can view certain sets of data (such as
financial data) and secondly it allows users to upload data or otherwise modify something, and there's a need to know who
did what, or to restrict who can do what.
Web services are used by an increasing number of companies as they expose products and services to customers and
business partners through the Internet and corporate extranets. The security requirements for these service providers are of
paramount importance. There are various threats to the web services but few major threats can be given as Unauthorized
Access, Parameter Manipulations, Network Eavesdropping, Disclosure of Configuration Data, Message Replay etc. We
should also keep in mind about the threats from SQL Injection.

KEYWORDS: Web service, web service security, securing a web service, threats to web services, web service security requirements.

INTRODUCTION
Web Services are a promising solution to an age-old need:
fast and flexible information sharing among people and
businesses. Web Services enable access to data that has
previously been locked within corporate networks and
accessible only by using specialized software. Along with
the benefits of Web Services comes a serious risk:
sensitive and private data can be exposed to people who
are not supposed to see it. Web Services will never attain
their tremendous potential unless we learn how to manage
the associated risks. Web Services represent the next phase
of distributed computing, building on the shoulders of the
previous distributed models. Widespread distributed
computing started with the Transmission Control
Protocol/Internet Protocol (TCP/IP). Using TCP/IP to
build distributed products was hard work for application
programmers, who just wanted to build business
applications. To ease the burden of distributed
programming the computer industry developed the
Distributed Computing Environment (DCE) based on the
client/server computing paradigm, followed by the
Common Object Request Broker Architecture (CORBA).

About the same time, Microsoft introduced the
Component Object Model (COM), followed by
Distributed COM (DCOM) using DCE technology as a
base, and COM+. Sun, building on its Java language
introduced the Java 2 Platform, Enterprise Edition (J2EE),
with its popular Enterprise Java Beans (EJBs), using many
concepts and research ideas from the previous
technologies. Each step made distributed computing easier
but each technology still lived, for the most part, in its own
world, making interoperability between the different
middleware technologies difficult.

I.J.E.M.S., VOL. 2(1)-2011: 15-19 ISSN 2229 -600X

15

SECURING WEB SERVICES

Ahmad Tasnim Siddiqui & Arun Kumar Singh
Research Scholar, Singhania University, Pacheri bari, Jhunjhunu Rajasthan, India

ABSTRACT
HTTP, Web Server and Web Services share very complicated set of functionalities and exchanges of information. Each
and every component plays very important role in the thousands of functions which any user can access and utilize over
Internet. Hyper Text Transfer Protocol allows users to interact with Web Servers and hence they can access the information
via the Internet. If any user requests data and files, Web servers serve them. Web Services allow cross-system, cross-
language communication among various types of machines and enable inter-business transaction and communications.
Although each technology works on its own and performs many useful functions, it is the combination of these
technologies that has created the dynamic functionalities of the Web that are available today. This research paper will
explore the inter-relationships between HTTP, Web Servers and Web Services technologies that have facilitated the
functionalities and convenience of the Web.
Web Services are very powerful tool that has greatly enhanced the efficiency and communication among businesses.
According to the World Wide Web Consortium (W3C), “a Web Service is a software system designed to support
interoperable machine-to-machine interaction over a network.” According to Zeldman, Web Services are a “reusable
software components based on XML and related protocols that enable near zero-cost interaction throughout the business
ecosystem.” In other words, Web Services are the software system that allows servers and client computers to
communicate with each other regardless of each individual machine’s environment (operating systems and programming
languages). The Extensible Markup Language (also popularly known as XML) page provides a very nice formula that
clearly defines the major components of Web Services. According to Simon, Web services = XML + SOAP + WSDL +
UDDI.
There are only two reasons for the need to secure a Web Service. First, the data it serves is sensitive in some way – it all
needs to be locked away from any un-authorized access, or only certain users can view certain sets of data (such as
financial data) and secondly it allows users to upload data or otherwise modify something, and there's a need to know who
did what, or to restrict who can do what.
Web services are used by an increasing number of companies as they expose products and services to customers and
business partners through the Internet and corporate extranets. The security requirements for these service providers are of
paramount importance. There are various threats to the web services but few major threats can be given as Unauthorized
Access, Parameter Manipulations, Network Eavesdropping, Disclosure of Configuration Data, Message Replay etc. We
should also keep in mind about the threats from SQL Injection.

KEYWORDS: Web service, web service security, securing a web service, threats to web services, web service security requirements.

INTRODUCTION
Web Services are a promising solution to an age-old need:
fast and flexible information sharing among people and
businesses. Web Services enable access to data that has
previously been locked within corporate networks and
accessible only by using specialized software. Along with
the benefits of Web Services comes a serious risk:
sensitive and private data can be exposed to people who
are not supposed to see it. Web Services will never attain
their tremendous potential unless we learn how to manage
the associated risks. Web Services represent the next phase
of distributed computing, building on the shoulders of the
previous distributed models. Widespread distributed
computing started with the Transmission Control
Protocol/Internet Protocol (TCP/IP). Using TCP/IP to
build distributed products was hard work for application
programmers, who just wanted to build business
applications. To ease the burden of distributed
programming the computer industry developed the
Distributed Computing Environment (DCE) based on the
client/server computing paradigm, followed by the
Common Object Request Broker Architecture (CORBA).

About the same time, Microsoft introduced the
Component Object Model (COM), followed by
Distributed COM (DCOM) using DCE technology as a
base, and COM+. Sun, building on its Java language
introduced the Java 2 Platform, Enterprise Edition (J2EE),
with its popular Enterprise Java Beans (EJBs), using many
concepts and research ideas from the previous
technologies. Each step made distributed computing easier
but each technology still lived, for the most part, in its own
world, making interoperability between the different
middleware technologies difficult.

I.J.E.M.S., VOL. 2(1)-2011: 15-19 ISSN 2229 -600X

15

SECURING WEB SERVICES

Ahmad Tasnim Siddiqui & Arun Kumar Singh
Research Scholar, Singhania University, Pacheri bari, Jhunjhunu Rajasthan, India

ABSTRACT
HTTP, Web Server and Web Services share very complicated set of functionalities and exchanges of information. Each
and every component plays very important role in the thousands of functions which any user can access and utilize over
Internet. Hyper Text Transfer Protocol allows users to interact with Web Servers and hence they can access the information
via the Internet. If any user requests data and files, Web servers serve them. Web Services allow cross-system, cross-
language communication among various types of machines and enable inter-business transaction and communications.
Although each technology works on its own and performs many useful functions, it is the combination of these
technologies that has created the dynamic functionalities of the Web that are available today. This research paper will
explore the inter-relationships between HTTP, Web Servers and Web Services technologies that have facilitated the
functionalities and convenience of the Web.
Web Services are very powerful tool that has greatly enhanced the efficiency and communication among businesses.
According to the World Wide Web Consortium (W3C), “a Web Service is a software system designed to support
interoperable machine-to-machine interaction over a network.” According to Zeldman, Web Services are a “reusable
software components based on XML and related protocols that enable near zero-cost interaction throughout the business
ecosystem.” In other words, Web Services are the software system that allows servers and client computers to
communicate with each other regardless of each individual machine’s environment (operating systems and programming
languages). The Extensible Markup Language (also popularly known as XML) page provides a very nice formula that
clearly defines the major components of Web Services. According to Simon, Web services = XML + SOAP + WSDL +
UDDI.
There are only two reasons for the need to secure a Web Service. First, the data it serves is sensitive in some way – it all
needs to be locked away from any un-authorized access, or only certain users can view certain sets of data (such as
financial data) and secondly it allows users to upload data or otherwise modify something, and there's a need to know who
did what, or to restrict who can do what.
Web services are used by an increasing number of companies as they expose products and services to customers and
business partners through the Internet and corporate extranets. The security requirements for these service providers are of
paramount importance. There are various threats to the web services but few major threats can be given as Unauthorized
Access, Parameter Manipulations, Network Eavesdropping, Disclosure of Configuration Data, Message Replay etc. We
should also keep in mind about the threats from SQL Injection.

KEYWORDS: Web service, web service security, securing a web service, threats to web services, web service security requirements.

INTRODUCTION
Web Services are a promising solution to an age-old need:
fast and flexible information sharing among people and
businesses. Web Services enable access to data that has
previously been locked within corporate networks and
accessible only by using specialized software. Along with
the benefits of Web Services comes a serious risk:
sensitive and private data can be exposed to people who
are not supposed to see it. Web Services will never attain
their tremendous potential unless we learn how to manage
the associated risks. Web Services represent the next phase
of distributed computing, building on the shoulders of the
previous distributed models. Widespread distributed
computing started with the Transmission Control
Protocol/Internet Protocol (TCP/IP). Using TCP/IP to
build distributed products was hard work for application
programmers, who just wanted to build business
applications. To ease the burden of distributed
programming the computer industry developed the
Distributed Computing Environment (DCE) based on the
client/server computing paradigm, followed by the
Common Object Request Broker Architecture (CORBA).

About the same time, Microsoft introduced the
Component Object Model (COM), followed by
Distributed COM (DCOM) using DCE technology as a
base, and COM+. Sun, building on its Java language
introduced the Java 2 Platform, Enterprise Edition (J2EE),
with its popular Enterprise Java Beans (EJBs), using many
concepts and research ideas from the previous
technologies. Each step made distributed computing easier
but each technology still lived, for the most part, in its own
world, making interoperability between the different
middleware technologies difficult.

SECURING WEB SERVICES

16

Now Web Services have burst on the scene. There are two
major Web Services goals—to make distributed
computing easier for the business programmer and to
enhance interoperability. These goals are aided by:

 Loose coupling between the requesting program
and the service provider

 The use of Extensible Markup Language (XML),
which is platform and language neutral

An important requirement for Web Services is to support
secure interoperation between the underlying object
models, such as .NET and J2EE, as well as to support
interoperation between the perimeter security and the mid-
tier, and between the midtier and legacy or back-office
systems. To this end, we give significant detail describing
the problems of maintaining secure interoperability and
how you can overcome these problems. The distributed
security community, as represented by the Organization
for the Advancement of Structured Information Standards
(OASIS), the World Wide Web Consortium (W3C), and
the Internet Engineering Task Force (IETF), has offered
the solutions to some of these problems in specifications
that have been developed by the cooperative efforts of
their member companies. Other organizations, such as the
Web Services Interoperability Organization (WS-I) and
the Java Community Process (JCP) have worked on
additional solutions.
In today’s global marketplace, the Internet is no longer
just about email and Web sites. The Net has become the
critical conduit powering a growing list of revenue-
generating e-business activities—from e-commerce and e-
supply chain management to online marketplaces and
collaboration. Web Services leverage the ubiquity of the
Internet to link applications, systems, and resources within
and among enterprises to enable exciting, new business
processes and relationships with customers, partners, and
suppliers around the world.
The benefits of Web Services are not limited to
interactions between different companies. Business units
within the same enterprise often use very different
processing environments. Each policy domain (that is,
scope of security policy enforcement) is likely to be
managed differently and be under the control of different
organizations. What makes Web Services so interesting is
that they provide interoperability across security policy
domains.

II.0 COMMON THREATS TO WEB SERVICES
There are many complexities specific to, and inherent in
Web services that further complicate their security.
Numerous threats can compromise the confidentiality,
integrity, or availability of a Web service or the back-end
systems that a Web service might expose. Some of these
threats are shared with conventional Web application
systems (Web sites), while others are specific to Web
services. However, before delving into specific Web
service security issues, it would be wise to first examine
the general security threats that can occur in any Web
application.
Typically, Web sites and Web services use common
technologies in terms of the programming languages of the
application. For example, both applications use data stores

and application servers on the back end; and on the front
end, both typically use a Web server and are exposed over
HTTP. Such architectural and technological similarities
result in Web services inheriting many common Web site
security threats.
II.1 SQL Injections
When SQL statements are dynamically created as software
executes, there is an opportunity for a security breach: if
the hacker is able to break perimeter security and pass
fixed inputs into the SQL statement, then these inputs can
become part of the SQL statement. SQL injections can be
generated by inserting spatial values or characters into
SOAP requests, Web form submissions, or URL
parameters. A hacker who knows his SQL can use this
technique to gain access to privileged data, log-in to
password-protected areas without a proper log-in, remove
database tables, add new entries to the database, or even
log-in to an application with admin privileges.
II.2 WSDL Scanning & Access
A WSDL document contains information pertaining to the
Web service such as available operations, the content of
the messages each of these operations accepts and returns,
and the endpoints that are available to invoke the
operations. Securing a Web service should rely on
cryptographic measures to fully protect information rather
than obscurity (security by obscurity should be avoided)
because the information that WSDL provides can expose
certain architectural aspects about the Web service that
could make it easier for an unauthorized user to mount an
attack.
II.3 XML Bombs
DTDs may have recursive entity declarations that, when
parsed, can quickly explode exponentially to a large
number of XML elements. This consumes the XML parser
resources causing a denial-of-service. For example:

<?xml version="1.0" ?>
<!DOCTYPE foobar [
<!ENTITY x0 "Bang!">
<!ENTITY x1 "&x0;&x0;">
<!ENTITY x2 "&x1;&x1;">...
<!ENTITY x99 "&x98;&x98;">
<!ENTITY x100 "&x99;&x99;">

]>
If it is processed, the DTD above explodes to a series of
2100 “Bang!” elements and will cause a denial-of-service.
II.4 XPath Injections
XPath injections are similar to SQL injections in that they
are both specific forms of code injection attacks. XPaths
enable one to query XML documents for nodes that match
certain criteria. For example, an XPath can be as simple as
the following:

//*[localname(.)="
user"][attribute:
:username="somebody"]/@*
[local-name(.)="password"]

The above XPath returns the value of the password
attribute for the username “somebody.” If such a query is
constructed dynamically in the application code (with
string concatenation) using invalidated inputs, then an
attacker could inject XPath queries to retrieve
unauthorized data.

I.J.E.M.S., VOL. 2(1)-2011: 15-19 ISSN 2229 -600X

17

III.0 WEB SERVICES SECURITY
REQUIREMENTS
Let’s begin by defining some core security services that
are fundamental to end-to-end application security across
multitier applications. They are:
III.1 Authentication: Verifies that principals (human
users, registered system entities, and components) are who
they claim to be. The result of authentication is a set of
credentials, which describes the attributes (for example,
identity, role, group, and clearance) that may be associated
with the authenticated principal.
III.2 Authorization: Grants permission for principals
to access resources, providing the basis for access control,
which enforces restrictions of access to prevent
unauthorized use. Access controls ensure that only
authorized principals may modify resources and that
resource contents are disclosed only to authorize
principals.
III.3 Cryptography: Provides cryptographic
algorithms and protocols for protecting data and messages
from disclosure or modification. Encryption provides
confidentiality by encoding data into an unintelligible
form with a reversible algorithm, which allows the holder
of the decryption key(s) to decode the encrypted data. A
digital signature provides integrity by applying
cryptography to ensure that data is authentic and has not
been modified during storage or transmission.
III.4 Accountability: Ensures that principals are
accountable for their actions. Security auditing provides a
record of security-relevant events and permits the
monitoring of a principal’s actions in a system. Non-
repudiation provides irrefutable proof of data origin or
receipt.
III.5 Security administration: Defines the security
policy maintenance life cycle embodied in user profiles,

authentication, authorization, and accountability
mechanisms as well as other data relevant to the security
framework.
All security services must be trustworthy and provided
with adequate assurance. That is, there must be confidence
that security services have been implemented correctly,
reliably, and without relying on the secrecy of proprietary
mechanisms.
IV.0 PROVIDING SECURITY FOR WEB
SERVICES
Given the diverse nature of these distributed
environments, it is not surprising that Web Services
security efforts to date have taken a “patchwork”
approach. This patchwork may include a range of existing,
standalone Web security mechanisms, together with
operating system security (domain logins),
communications security (SSL), applications environment
security (J2EE, COM+, .NET, or CORBA), and SSO
(Netegrity SiteMinder, IBM/Tivoli Policy Director, or
others) solutions. Even electronic mail systems can
support Web Services. The problem is that each of these
solutions has evolved to solve a specific problem within a
single tier or domain. While there have been attempts to
extend these solutions beyond their original scope, the
results have not been very rewarding.
The following diagram illustrates new and existing
security mechanisms for securing Web Services at
different security tiers. For instance, where access to the
Web Service is through a Web Server, Secure Sockets
Layer (SSL) and Web SSO can be used. At the application
level, Security Assertion Markup Language (SAML) can
be used to support authentication and authorization across
domains. Finally, access to a mainframe is needed to
complete the request, and a mainframe authentication
system is in place.

Example of Web Service security implementation (Source: Mastering web services, Bret Hartman, Donald J. Flinn etc.)

V.0 SECURING .NET WEB SERVICES
We can use the security features when your web services
are implemented using the Microsoft .NET framework.
Not only are there multiple options for building a Web
Service with .NET, there are also multiple alternatives for
protecting Web Services applications. An important
building block of Microsoft’s Web Services solutions, IIS
plays a critical role in protecting the hosted .NET Web
Services. The security mechanisms IIS provides can be
classified in the following basic groups: authentication,

message protection, access control, logging, and fault
isolation.
V.1 Access Control
All these efforts by IIS—to use a system account for
anonymous requests, map clients authenticated with X.509
certificates into user accounts, and support impersonation
by HTTP handlers—are mainly for the sake of leveraging
native OS access control mechanisms for protecting IIS
resources. When an HTTP handler accesses an HTML or
any other file in order to process the corresponding HTTP
request, Windows file system permissions in the form of a

SECURING WEB SERVICES

18

discretionary access control list (DACL) are used by the
OS to enforce access control policies. Keep in mind that
this mechanism is only available on NTFS file systems. If
a file to be accessed resides on a FAT partition, no access
checks are done.
Two other access control mechanisms—Web permissions
and IP-based restrictions—could be used in addition to
DACL controls.
V.2 Logging
Security auditing is not an option for IIS, although its
logging facilities can serve as a partial substitution. If
configured to do so, IIS logs information in text format
about HTTP requests into
%winnt%\system32\LogFiles\W3SVC<n>, where <n> is
the number of the Web site instance. You can select, per
Web site instance, what information is recorded about
processed requests. There are around 20 request-specific
details and a number of process accounting properties that
could be recorded on each request. Whether to log a
request to a particular IIS resource is determined by the
option “Log visits”.
V.3 Fault Isolation
Fault isolation can be considered as a part of the group of
security mechanisms known as service continuity.
Although IIS does not offer full-blown service continuity
solutions, at least it provides a way to isolate HTTP
handlers from the main process in which IIS is executing,
InetInfo.exe, and from each other. This is done through
configuring applications in virtual directories to run with
one of the following options (supported by IIS v5):
V.4 IIS process: All requests to the files in the virtual
directory are handled in the space of InetInfo.exe. Having
the best performance, this option does not offer any fault
isolation. That is, if the handler crashes because of an error
in the application code, IIS will crash as well.
V.5 Pooled: Requests to the resources of all virtual
directories configured with this option run in the same
process external to InetInfo.exe. The process runs under
the identity of an account controlled by IIS,
IWAM_<machinename>. This offers the best performance
versus robustness trade-off, because if a Web application
crashes, it takes down only other applications, but not
InetInfo.exe, which will be able to relaunch the pool
process on the next request that needs one of the pooled
handlers. This is the default option.
V.6 Isolated: Executes each Web application in its
own process that runs under the IWAM_<machinename>
account. This option has the highest level of fault
isolation—no faulty application could bring down any
other application—but it is not as fast as the previous one.
VI.0 ASP.NET AUTHENTICATION SERVICES
Authentication facilities can either ride on top of IIS
authentication or get by without it. First of all, if IIS
authentication is used, then ASP.NET can be configured to
accept the authenticated identity so that Web Services will
have access to it. This is done through the following
element in the ASP.NET configuration file, web.config:

<configuration>
<system.web>
<authentication mode=”Windows”/>
</system.web>
</configuration>

Use of the value “Windows” instructs ASP.NET to take
advantage of the authentication performed by the IIS.
VI.1 HTTP Modules
If you are not satisfied with any of the above methods of
authentication, you still have one more option available in
ASP.NET.

<configuration>
<system.web>
<httpModules>
<add name=”FooAuthenticationModule”
type=”eBusiness.Authentication.FooAuthModule,
eBusiness.Authentication” />
</httpModules>
<authentication mode=”None” />
<authorization>
<deny users=”?” />
</authorization>
</system.web>
</configuration>

The element http Modules contains information necessary
for ASP.NET run time to locate the module and place it at
the interception point for all incoming HTTP requests. The
use of value “None” in the authentication mode section
instructs the run time to turn off preinstalled ASP.NET
authentication modules.

VII.0 CONCLUSION
Securing one’s Web services is a vital aspect of ensuring a
successful deployment. When deployed externally for
consumption by partners or customers, only secure Web
services can provide a justifiable integration solution,
because the benefits they expose should far outweigh the
risks. For true security, one needs to understand the
potential security risks and proactively minimize those
risks. Using the right tool for the job is important, both in
terms of products and technologies. Make sure that every
security decision is followed by attention to detail in the
implementation and by extensive testing; then one is on
one’s way to developing Web services that are less
vulnerable to attack. WS-Security also addresses message
privacy and integrity issues. You can encrypt whole or
partial messages to provide privacy, and digitally sign
them to provide integrity.

REFERENCES
An Oracle White Paper June 2009, Securing Web Services
and Service-Oriented Architectures with Oracle Web
Services Manager 11g

Anoop Singhal, Theodore Winograd, Karen Scarfone,
Guide to Secure Web Services, NIST Special Publication
800-95

B. Evjen, S. Hanselman, D. Rader, Professional ASP.NET
3.5 In C# and VB, Wrox, ISBN: 978-0-470-18757-9

B. Hartman, Donald J. Flinn, Konstantin Beznosov,
Shirley Kawamoto Mastering Web Services Security,
Wiley Publishing inc. (2003).

Brown, Keith, Programming Windows Security. Upper
Saddle River, Addison-Wesley, 2000.

I.J.E.M.S., VOL. 2(1)-2011: 15-19 ISSN 2229 -600X

19

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vsent7/html/vxconIISAuthentication.asp

http://www.w3.org/XML/1999/xml-in-10-points

http://xml.com/lpt/a/2001/04/04/soap.html

IBM and Microsoft. “Security in a Web Services World: A
Proposed Architecture and Roadmap”,http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/
dnwssecur/html/securitywhitepaper.asp, 2002

Lim Vu, Securing Web Communications“Microsoft .NET
Passport.” http://www.microsoft.com/myservices/passport,
2001b

Petr PALAS, Securing Web Services Using Microsoft
Web Services Enhancements 1.0, www.PortSight.com

Rami Jaamour, Securing Web Services,
www.infosectoday.com.

Securing ASP.Net Web Services with Forms Authentication
http://dotnetslackers.com/articles/aspnet/Securing-ASP-Net-
Web-Services-with-Forms-Authentication.aspx

Zoran Zaev, Securing Web Services with VB.Net,
xmldevleoper Jul, 2002, www.xmldevelopernewsletter.
com

