
I.J.E.M.S., VOL.3(2) 2012: 99 - 104 ISSN 2229-6425

99

SOFTWARE PERFORMANCE EVALUATION ALGORITHM EXPERIMENT
FOR IN-HOUSE SOFTWARE USING INTER-FAILURE DATA

*Jimoh, R. G. & Abikoye, O. C.
Computer Science Department, University of Ilorin, P.M.B 1515 Ilorin, Nigeria

ABSTRACT
This work aims at testing software performance on three main yardsticks: Reliability, availability and maintainability using a
package (designated IN HOUSE software) prepared by us as the case study. The inter-failure data was recorded during an
experiment with the software and it provided information about the software failures; it is recorded in terms of execution time
in (seconds) between successive failures using a simulation of the real operational environment. This is measured as a function
of mean time to failure (MTTF), the availability is measured as a function of mean time between failure (MTBF) and
Maintainability is measured as a function of mean time to Maintain (MTTM). The inter-failure data collected were analyzed to
reflect the relationship among the three test parameters. It is proved that our IN HOUSE software can favorably compete with
any existing model in its class.

KEYWORDS: Software Reliability, Software Availability , Software Maintainability, Mean time to failure (MTTF), Mean
time between failure (MTBF) and Mean time to maintain (MTTM).

INTRODUCTION
Software performance evaluation has been of great concern
to software engineers since it takes some degree of expertise
to determine whether a software is of good performance
regardless of whether it is operational or not. There have
been many difficulties in determining the performance; the
three nexus (reliability, availability and maintainability)
have to be jointly considered for optimum result (Pfleeger,
1997). There are different ways of testing the system which
include function testing, performance testing, acceptance
testing and installation testing (Pfleeger, 1997).

The yardsticks are defined as followed from various
scholarly points of view (IEEE, 1990; IAN, 1992; Musa,
1997; Pfleeger, 1997; Rankin, 2002; Land, 2003; Leach,
2003; Change tech Solutions Inc, 2003; Jawadekar, 2004)

• Function Testing:- This confirms the fact that the tasks
to be performed by the system are correctly performed.
It checks that the system performs its functions as
specified in the requirement.

• Performance Testing:- This is a measure against the
non-functional requirements of the system such as
speed, reliability, availability, accuracy and so on.
System performance is measured against the
performance objectives set by the customers as
expressed in the nonfunctional requirement.

• Acceptance Testing:- This test is conducted to validate
that the requirements set by the customers have been
implemented by the developed system. It helps in
assuring the customers that there is no variation between
the required system and the developed one.

• Installation Testing:- It allows the user to exercise
system functions and document additional problems that

are functions of difference in the operational
environment.

• Failure Data:- This is the information captured when a
particular software fails. Inherent in any set of failure
data is a considerable amount of uncertainty. Even when
we can ascertain all possible faults existing in the
software, yet we cannot still state with certainty when it
will fail next.

This work is mainly on performance evaluation (testing)
using Reliability function, Availability function and
Maintainability function in measuring software performance.
The main work is to confirm the suitability of the metrics for
the three measure of software performance having in mind
that availability is not a function of execution time but rather
the clock time.

TYPES OF PERFORMANCE TESTING
Performance test is based on the requirements, so that types
of tests are determined by the kind of nonfunctional
requirements specified.
• Stress tests evaluate the system when stressed to its

limits over a short period of time. If the requirements
state that a system is to handle up to a specified number
of devices or users, a stress test evaluates system
performance when all those devices or users are active
simultaneously

• Volume tests address the handling of large amounts of
data in the system. for example , we look at whether
data structures (such as queue or stack) have been
defined to be large enough to handle all possible
situations. In addition we check fields, records, and files
to see if their sizes can accommodate all expected data.

• Configuration tests analyses the various software and
hardware configurations specified in the requirements.

Software performance evaluation algorithm experiment for in-house software using inter-failure data

100

Sometimes a system is built to serve a variety of
audiences and the system is really a spectrum of
configurations. For example we may define minimal
system to serve a single user, and other configurations
build on the minimal configurations to serve additional
users. This test evaluates all possible configurations to
make sure that each satisfies the requirements.

• Compatibility tests are needed when a system
interfaces with other systems. We find out whether the
interface functions perform according to the
requirements. For instance, if the system is to
communicate with a large database system to retrieve
information, a compatibility test examines the speed and
accuracy of data retrieval.

• Regression tests are required when the system being
tested is replacing an existing system. The regression
tests guarantee that the new system’s performance is at
least as good as that of the old. Regression test are
always used during a phased development.

• Security tests ensure that the security requirements are
met. We test system characteristics related to
availability, integrity and confidentiality of data and
services.

• Timing tests evaluate the requirements dealing with
time to respond to a user and time to perform a function.
If a transaction must take place within a specified time,
the test performs that transaction and verifies that the
requirements are met. Timing tests are usually done in
concert with stress to see if the timing requirements are
met even when the system is extremely active.

• Environmental tests look at the system’s ability to
perform at the installation site. If the requirements
include tolerances for heat, humidity , motion , chemical
presence, moisture, portability, electrical or magnetic
fields, disruption of power or any other environmental
characteristic of the site, then our tests guarantee the
system ‘s proper performance under these conditions.

• Quality tests evaluate the system’s reliability,
maintainability and availability. These tests include
calculation of meant time to failure and mean time to
maintain, as well as average time to find and fix a fault.
Quality tests are sometimes difficult to administer. For
example, if a requirement specifies a long mean time
between failures, it may be infeasible to let the system
run long enough to verify the required mean.

• Recovery tests address response to the presence of
faults or to the loss of data, power, devices or services.
We subject the system to a loss of system resources and
see if it recovers properly.

• Maintenance tests address the need for diagnostic tools
and procedures to help in finding the source of
problems. We may be required to supply diagnostic
programs, memory maps, traces of transactions, circuit
diagrams, and other aids. We verify that the aids exist
and that the function properly.

• Documentation tests ensure that we have written the
required documents. Thus, if user guides, maintenance
guides and technical documents are needed, we verify
that these materials exist and that the information they

contain is consistent, accurate, and easy to read.
Moreover, sometimes requirements specify the format
and audience of the documentation; we evaluate the
documents for compliance.

• Human factor tests investigate requirements dealing
with the user interface to the system. We examine
display screens, messages, report formats, and other
aspects that may relate to ease of use. In addition,
operator and user procedures are checked to see if they
conform to ease of use requirements. These tests are
sometimes called usability tests.

SOFTWARE PERFORMANCE MEASURES

 Software Reliability (Rs)
The concept of software reliability can be defined as ability
of software system to function consistently and correctly
over long periods of time (Pfleeger, 1997). Software
reliability can also be defined as the probability of a failure-
free software operation for a certain period of time in a given
operational environment (Immonen, 2006). Software
reliability is an important factor affecting system reliability.
It is quite different from hardware reliability since it reflects
the design perfection rather than manufacturing perfection as
in the case of hardware reliability. Software Reliability is a
function of execution/operational time and not the real time
(clock time) (Pan, 1999) so that it more accurately reflect
system usage.
 Software Reliability measures the system operation
without failing over a long period of time. It operates on a
scale between 0 and 1 that is Rs 1. The software
system is considered to be reliable if and only if it has
reliability value close to 1. Consequently, the software
system is considered not to be reliable if it has reliability
value close to zero.

The measure of reliability reflects the system usage and
it is always calculated based on execution time rather than
the clock time.

Software Availability (As)
Availability of software can be guarantee when the system is
operating successfully according to specification at a given
point in time (Pfleeger, 1997). More formally, it is the
probability that a system is functioning completely at a given
point in time, assuming that the required external resources
are also available. It is a function of clock time and not
operational time. A system that is up and running has
availability 1 while the one that is unusable has availability
0. In order to achieve an accurate measure of availability
exactly experienced by the end user, there is need to fully
understand the system configurations (Change Tech
Solutions, 2003). Things to really understand include
components and resources being used by the application in
question (local and remote) and required hardware and
software resources.

The availability is calculated by measuring the number
of committed hours of availability (A) over a period of time
as decided by the organiasation using the application
(Pfleeger, 1997; Change Tech Solutions, 2003). Achieved
Availability can rather be measured in terms of outage hours

I.J.E.M.S., VOL.3(2) 2012: 99 - 104 ISSN 2229-6425

101

(outage time measured in hours within committed hours of
availability, both unplanned and predetermined outage must
be consider in achieving continuous availability(Change
Tech Solutions, 2003). The hours of outage can be used in

measuring the mean time between failure. Table1 below
explains the relationship between availability targets and
hours of outage allowed for a continuous availability level to
be achieved.

Table 1: Outage Hours and Continuous Availability (Change Tech Solutions, 2003)

Continuous availability target Hours of outage allowed per month

99.99% 0.07 hours

99.9% 0.7 hours

99.5% 3.6 hours

99.0% 7.2 hours

98.6% 10.0 hours

98.0% 14.4 hours

Software Maintainability (Ms)
According to IEE standard computer dictionary (1990),
Maintainability can be defined as the ease and speed with
which any maintenance activity can be carried out on an
item of equipment. It is also defined as the ease with which a
software system or component can be modified to correct
faults, improve performance or other attributes, or adapt to a
changed environment.

Maintainability is analogous to Cumulative Failure time
in reliability. Maintainability can be defined as the
probability that a specified maintenance action on a
specified item can be successfully performed (putting the
item into a specified state) within specified characteristics
using specific tools and procedures (Rosenberg, 2000).

Maintainability is the probability that for a given
condition of use, a maintenance activity can be carried out
within a stated time interval and using a stated procedures
and resources. The scale is between 0 and 1 that is 0 Ms 1.
This means that a system is maintainable if its
maintainability is close to 1 and not maintainable if its
maintainability is close to 0. Because Software reliability,
availability and maintainability are defined in terms of
failures they must be measured once the system is complete
and working. The suitability of this approach is best
explained by the calculated values of reliability, availability
and maintainability.

MAIN RESULTS
In this work, we developed a software and it is designated an
IN- HOUSE software for result computation of the
Postgraduate Diploma Students in the Department of
Computer Science, University of Ilorin for over six years
now and has since then been put into effective usage. The
most important factor in this work is the system failure
which might be catastrophic, critical, marginal or minor.
Information about the software failure is taken using two
assumptions:

• That there is a possibility of causing another
problem while solving a particular one.

• The inability to predict the next failure

Interfailure Data
Inter-failure data is a data of successive failures of the
departmental result computation in house software in an
operational environment over a particular period of time.
The inter-failure data of an in house application, used in the
computation of student’s result (case study) are taken in
terms of execution time in (seconds) between successive
failures of a command-and-control system during in house
testing using a simulation of the real operational
environment (Musa, 1997). The data is presented in Table 2
below.

Table 2: Table of inter-failure time Read from Left to Right:

Kindly mmention the attribute in Table

106 133 219 184 218 112 105 194 215 118

240 152 179 126 210 190 772 222 128 216

132 100 102 104 323 161 272 154 553 395

440 170 257 183 437 295 125 1080 715 130

175 580 852 190 115 900 618 925 702 1225

125 238 203 105 1033 712 402 275 292 185

1080 521 442 1315 2212 452 220 185 1020 800

Software performance evaluation algorithm experiment for in-house software using inter-failure data

102

Measuring Reliability, Availability and Maintainability
We want to measure reliability, availability and
maintainability as attributes of the software developed
measured as numbers between 0 (unreliable, unavailable and
unmaintainable) and 1 (completely reliable, always
available and completely maintainable). To derive these
measures, we examine attributes of failure data. Assuming
that we are capturing failure data and that we have seen

1 failures. We can record the interfailure times, or times
to failure as , , , .The average of these values is
the Mean Time To Failure (MTTF). After each underlying
fault has been fixed and the system is again running. We
now use Tt to denote yet-to-be observed next time to failure.
Tt is a random variable.

There are several other time–related data important to
calculating availability and maintainability. Once a failure
occurs there is additional time lost as the faults causing the
failure are located. The Mean Time to Maintain (MTTM) is
the average time it takes to fix a faulty software component.
The Mean Time to Failure (MTTF) can be combined with

the Mean Time to Maintain (MTTM) to determine how long
the system is unavailable. That means we measure
availability by examining Mean Time between Failure
(MTBF) = MTTF + MTTM.

As the system becomes more reliable, its MTTF should
increase. We can use MTTF in a measure whose value is
near zero when MTTF is small, and nears 1 as MTTF gets
increased. Considering this relationship, a measure of
reliability can be defined as:

Rs = MTTF/(1 + MTTF) …………….Reliability function
Similarly, we can measure availability as to maximize
the MTBF

As = MTBF (1 – MTBF)…………….Availability function
Also, maintainability can be measured to minimize the
MTTM as

Ms = 1/(1 + MTTM)……..…….Maintainability function.
Note that MTTF, MTBF and MTTM are derived from
the inter-failure data.

RESULTS AND DISCUSSION
Table 2- Descriptive Statistics

Table 3 : T-Test One Sample Test

Graph 1: Mean Time to failure

70 100.00 2212.00 403.8000 386.2255
70

Mean time to failure
Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

.028 69 .978 1.5143 -105.7221 108.7506Mean time to maintain
t df Sig. (2-tailed)

Mean
Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

Mean time to failure

1315.00

1020.00

800.00

702.00

521.00

437.00

295.00

257.00

220.00

215.00

190.00

179.00

154.00

130.00

118.00

105.00

Missing

Count

2.2

2.0

1.8

1.6

1.4

1.2

1.0

.8

I.J.E.M.S., VOL.3(2) 2012: 99 - 104 ISSN 2229-6425

103

Graph 2: Mean Time to maintain

Graph 3: Relationship between MTTF and MTTM

From the result of the analysis, we have the following
values:

Mean Time to Failure (MTTF) = 403.800
Mean Time to Maintain (MTTM) = 1.5143
Mean Time Between Failure (MTBF)= MTTF + MTTM
MTBF = 403.8000 + 1.5143 = 405.3143.

The obtained values are then used in calculating the
reliability, availability and maintainability as follow:

Reliability Rs = MTTF (1 + MTTF)
 = 403.8000 /1 + 403.8000
 = 403.8000/404.8000
 = 0.9975
Availability As = MTBF (1-MTBF)
 = 405.3143* (1- 405.3143)
 = 405.3143 * -404.3143
 = -163874.3675

Maintainability Ms = 1/(1 + MTTM)
 = 1/(1+1.5143)
 = ½.5143
 = 0.4

CONCLUSION
As we can see from the result that the departmental result
computation in house software is considered to be reliable
with a reliability value 0.9975 which is very close to 1, also
it is fairly maintainable since the maintainability value 0.4 is
not very close to 0. But on the contrary, the availability
value does not fall within the range; this can be attributed to
the fact that we cannot use execution time to evaluate
availability. Therefore such a metric cannot be used for
availability.
From our result we are able to confirm that the metrics:

As = MTBF (1-MTBF)

Case Number

69

65

61

57

53

49

45

41

37

33

29

25

21

17

13

9

5

1

Value

3000

2000

1000

0

-1000

-2000

Mean time to maintain

Mean time to failure

Mean time to maintain

1100.00

559.00

310.00

223.00

158.00

107.00

94.00

75.00

32.00

-17.00

-45.00

-88.00

-122.00

-307.00

-582.00

-895.00

Missing

Count

3.5

3.0

2.5

2.0

1.5

1.0

.5

Software performance evaluation algorithm experiment for in-house software using inter-failure data

104

cannot be used to measure software availability since mean
time between failure MTBF is a function of execution time
whereas availability of software has to do with clock time.

It can thus be recommended that another metrics should
be used to measure software availability. Such revealed that
using execution time cannot adequately capture the outage
hours of the software system in question. This means it is
practically impossible to measure reliability, maintainability
and availability together using the same nexus. Such
difficulty can be attributed to the fact that while one relies on
execution time, the other relies on clock time.

REFERENCES
Change Tech. Solutions Inc. (2003) “How to measure
system availability targets,” The Harris Kern Enterprise
Computing Institute, February, 2003, Accessed from
http://articles.techrepublic.com.com/5100-10878_11-
1060287.html on February,2008.

IAN C. (1992) Software Engineering, Addison-Wesley
Publishing Company, New York, United State, pp 389 –
396.

IEEE (1990) IEEE Standard Glossary of Software
Engineering Terminology, US. Accessed from
http://ieeexplore.ieee.org/servlet/opac?punumber=2238 on
July, 2007

Immonen, A. (2006) A method for predicting reliability and
availability at the architectural level in Software Product
Lines Research Issues in Engineering and Management,
2006 edition

Jawadekar, W. S. (2004) Software Engineering, Principle &
practice, New Delhi: Tata McGraw-Hill Publishing
Company Limited

Land, R. (2003) Measurement of software maintainability, A
Publication of Malardalen University

Leach, R. J. (2000) Introduction to software engineering,
Boca Raton, London New York Washington D.C: CRC
Press

Musa, J. D. (1997) Introduction to Software engineering and
testing, 8th international symposium on software reliability
engineering

Pan, J. (1999) Software Reliability in Embedded Systems,
Carnegie Mellon
http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/p
resentation.pdf

Pfleeger, S. L. (1997) Software Engineering, theory &
practice, Washington D.C: Pearson Education

Rankin, C. (2002) The Software Testing Automation
framework, IBM systems journal, 41(1), 126 -139

Rosenberg, J. (2000) Can we measure maintainability, 901
San Antonio Road, Palo Alto, California: Sun Microsystem,

