
I.J.E.M.S., VOL.3(2) 2012: 109 - 114 ISSN 2229-600X

109

QUALITY METRICS IMPLEMENTATION IN COMPONENT BASED
SOFTWARE ENGINEERING USING AI BACK PROPAGATION ALGORITHM

SOFTWARE COMPONENT

Sidhu Pravneet
SPCET, Mohali, Punjab, India 140 507

ABSTRACT
Quality in the Component Based Software Engineering has always been an area to be explored upon. Component Based
Software Engineering is concerned with the rapid assembly of systems from components where components and component
frameworks have certified properties and those serve as a purpose for predicting the properties of the system. CBSE generally,
consists of modular design and development of applications based on software components, developed independently, and
suitably combined to compose the final application. It deals with COTS where there software components are readily available
for use without the code being written. The Quality in Component based software engineering is defined as the totality of
characteristics of the solution that bear on its ability to meet the user’s stated or implied needs. A software component is of
high quality if it uses standard language features, it contains no machine dependencies and it implements a single, well-defined,
encapsulated and precisely specified function whose computations is all fully adjustable and uses no global variables or side-
effects. The quality attributes of a component are most often not a constant property. In this journal certain quality metrics
have been used to indicate the exact quality of an Artificial Intelligence component which is the AI Back propagation
Algorithm both at compile time and run time.

KEYWORDS: CBSE, COTS, AI Back propagation Algorithm, quality

INTRODUCTION
The Quality in Component Based Software Engineering is
defined as the totality of characteristics of the solution that
bear on its ability to meet the user's stated or implied needs.
Quality of the components can also be increased in
component based software engineering. In an ideal setting, a
software component that is developed for reuse would be
verified to be correct & would make no defects. In reality,
formal verification is not carried out routinely, and defects
can and do occur. However, with each reuse, defects are
found and eliminated, and a component’s quality improves
as a result. Quality factors are visualized as by user’s
perspective view, certifier’s perspective view and also by
developer’s perspective view. All the three have to be
satisfied in order to have a high quality component. As the
source code is not available along with the component so
modifications & any sort of manipulations become difficult
.In order to achieve a high quality component a prior
modifications have to be made so that the component is
checked in all sort of environments and is both reliable &
fault tolerant.

Literature survey
Two early models[2] were described by McCall (1977) and
Boehm (1978). In these models, the model-builders focus on
the final product and identify the key attributes of quality
from the user’s point of view. The key attributes, also called
quality factors, are normally external attributes, for example

“maintainability” and “reliability” [1]. They may also
include internal attributes though, such as “efficiency”. Both
the McCall model and the Boehm model assume that these
quality factors are at too high a level to be meaningful or
ever measurable. Because of this, the quality factors are
further decomposed into lower level attributes, called quality
criteria.

In 2001, Stafford and Wallnau developed a model for
component marketplaces that support prediction of system
properties prior to component selection. The model is
concerned with the question of verifying functional and
quality related values associated with the components. This
work introduced notable changes in this area, since it
presents a Component based development process with
support for component certification according to credentials,
provided by the component developer. Such credentials are
associated with arbitrary properties and property values with
components, using a specific notation such as <property,
value, credibility>. Through credentials the developer
chooses the best components to use in the application
development based on the “credibility” level. Stafford and
Wallnau also introduced the notion of active component
dossier, in which the component developer packs a
component along with everything needed for the component
to be used in an assembly. A dossier is an abstract
component that define certain credentials, and provides
quality mechanisms that, given component, will fill in the
values of these credentials. Stafford and Wallnau finalized

Quality metrics implementation in component based software engineering using ai back propagation algorithm

110

their work with some open questions, such as: how to certify
measurement techniques? What level of trust is required
under different circumstances? Are there other mechanisms
that might be used to support quality?
ISO International Standard 8402 has defined Quality Model
as:-
“The set of characteristics and the relationships between
them which provide the basis for specifying quality
requirements and evaluating quality”.
ISO 9126 model had 5 characteristics and did not take into
account the Portability characteristic. Sub-characteristics
fault tolerance, stability, analyzability were not considered at
all. This model is shown in table 1.
Manuel F. Bertoa [2] modified the quality model proposed
by ISO to define a quality model for COTS
components.Xavier Franch et al. proposed a six steps
methodology aimed at defining a quality model for a given
software domain using ISO/IEC quality standard as
framework in 2003.They adapted the methodology for its
application in COTS based system domain- “ERP System”
in 2004.
COTS quality model also had 5 characteristics and did not
take into account the Portability characteristic. Sub-
characteristics were divided into run time sub-characteristics
and sub-characteristics at life cycle. Compatibility and
complexity sub-characteristic were added in this COTS
model. The COTS model is shown in table 2

The quality attributes of a component are most
often not a constant property. Much more, the quality of a
component heavily depends on the specific usage context.
Therefore, we present a specification method for
contractually specified components which does not specify
quality attributes as constants but as functions to be
evaluated at deployment. The “design-by-contract”-principle
is applied to components. Parameterised contracts are used
to compute the reliability of software components [3]. COTS
quality model also had 5 characteristics and did not take into
account the Portability characteristic. Sub-characteristics
were divided into run time sub-characteristics and sub-
characteristics at life cycle. Compatibility and complexity
sub-characteristic were added in this COTS model. Refined
COTS model is shown in table 3.

MATERIALS AND METHODS

Quality metrics: Presence, IValues and Ratio
A quality metric is the defined measurement method & the
measurement scale and the measure is the number or
category assigned to an attribute.Quality metrics would be
used to evaluate the quality[14] level of components before
the making the purchase or develop decisions. The possible
metrics that can be used in component based software
development would be [6]:-
 Management metrics (cost, time to market, software

engineering environment and system resource
utilization),

 Requirements metrics (requirements conformance, and
requirements stability),

 Quality oriented metrics (adaptability, complexity of
interfaces and integration, integration test coverage,

end-to-end test coverage, fault profiles, reliability, and
customer satisfaction metrics).

The metrics that will be used for measuring the attributes are
the following [6]
Presence:
This metric identifies whether an attribute is present in a
component or not. It consists of a Boolean value and a
string. The Boolean value is used to indicates whether the
attribute is present and, if so, the string describes how the
attribute is implemented by the component;
IValues:
This metric is used to indicate exact values of the component
information’s. It is described by an integer variable and a
string to indicates the unit (e.g. kb, mb, khtz, etc.); and
Ratio:
This metric is used to describe the ratios.

One of the most compelling reasons for adopting
component-based approaches to software development is the
premise of reuse. The idea is to build software from existing
components primarily by assembling and replacing
interoperable parts. The implications for reduced
development time and improved product quality make this
approach very attractive. In this way, we aim to propose
consistent and well-defined quality characteristics, quality
attributes and related metrics for the component evaluation.
A preliminary evaluation to analyze the results is also
presented.

The AI Back Propagation component
The AI back propagation component is able to implement
the back propagation algorithm which is used for training
multilayer artificial neural networks. It can be applied to any
number of layers. For convenience, maximum up to 4 layer
networks are used. The GUI for AI back propagation
network commands, snap shot for working of AI back
propagation algorithm and AI Back Propagation component
is shown in the Figure 1, 2 and 3 respectively.

Implementation of quality metrics
In implementation of component quality attributes for sub-
characteristics during run time, we have shown the
component attributes for Sub-characteristics that are
observable at run time. In the component, the accuracy i.e
the correctness level is present. Hence the value 1 is given as
result. Same is the case with error handling. But response
time is not known and so the value 0. The memory and the
disk usage is known. In here we have taken the different
attributes like correctness, error handling, response time,
memory usage disk usage. Some metrics are of type ratio,
some are presence and some are IV i.e. information values.
The implementation is shown in Table 4.

In implementation of component quality attributes
for sub-characteristics during life cycle, we have shown the
component attributes for Sub-characteristics that are
observable at life cycle. In the component, the suitability sub
characteristic is present. Hence the value 1 is given as result.
Same is the case with attribute document available. But

I.J.E.M.S., VOL.3(2) 2012: 109 - 114 ISSN 2229-600X

111

failure removal i.e. the number of bugs fixed is not known.
Metrics are of type ratio, presence and some are IV i.e.
information values type. The implementation is shown in
Table 5.

RESULTS AND DISCUSSION
In here, we have found certain quality metrics for the AI
back propagation component. Both the quality metrics and
their types have been asserted in the above tables. Quality
metrics and quality attributes both at run time and at life
cycle have been evaluated for the AI back propagation
component. For clarity during run time of the component
four sub-characteristics, namely accuracy, recoverability,
time behavior and resource behavior are taken into account.
For these sub-characteristics certain attributes are specified
such as correctness, error handling, response time memory
usage and disk usage. During life cycle sub-characteristic
like suitability, maturity and understandability are
visualized. These include attributes such as pre and post
conditions, failure removal and document available.

CONCLUSION
Quality by product issue is especially critical in emergence
of the software component market. By producing
components satisfying the quality requirements, software
producers become more enthusiastic to consume the market-
oriented components. In return, a more matured market
would become available which further encourages the
component consumption and producing the software in
component-based manner. An objective method has been
described here to calculate the quality of the software
component by using component quality metrics like
presence, Ivalues and ratios.
FUTURE WORK
The software quality problem cannot be solved without
changing the existing software development style, and

establish a new development culture based on continuous
process improvement. This requires that, the software
development organizations must define formal processes and
regularly collect data to assess and improve the development
receiving a better organizational maturity. Other aspects of
the quality can also be taken into consideration for a detailed
structure analysis of the Software components like
maintainability, availability and usability.

REFERENCES
B. Meyer, M. Jezequel, “Design by Contract: The Lessons of
Ariane”, IEEE Computer, Vol. 30, No. 02, 1997, pp. 129–
130.

B. Boehm, C. Abts, and E. Bailey, "COCOTS Software
Integral Cost Model: an Overview," In Proceedings of the
California Software Symposium, 1998

ISO/IEC JTC1/SC7, Information Technology - Software
product quality: Quality model,. ISO/IEC, 9126, 1999.

Kam-Fai Wong, Michael R. Lyu, Xia Cai-Component-Based
Software Engineering: Technologies, Development
Frameworks, and Quality Assurance Schemes;In
Proceedings of the Seventh Asia-Pacific Software
Engineering Conference(APSEC.00), IEEE 2000.

Raje R., .UMM: Unified Meta-object Model for Open
Distributed Systems, Proceedings of the fourth IEEE
International Conference on Algorithms and Architecture for
Parallel Processing (ICA3PP’2000).

Brahnmath G., Raje R., Olson A., Sun C., .Quality of
Service Catalog for Software Components., Technical
Report (TR-CIS-0219-01), Department of Computer and
Information Science, Indiana University Purdue University
Indianapolis, 2001.

Table 1: ISO 9126 Quality Model
CHARACTERISTICS SUB-CHARACTERISTICS
Functionality Suitability

Accuracy
Interoperability
Compliance
Security

Reliability Maturity
Recoverability

Usability Learnability
Understandability
Operability

Efficiency Time behaviour
Resource behaviour

Maintainability Changeability
Testability

Installability
Conformance
Replacability
Adaptability

Quality metrics implementation in component based software engineering using ai back propagation algorithm

112

Table 2: COTS Quality Model

CHARACTERISTICS SUB-CHARACTERISTICS
(RUN TIME)

SUB-CHARACTERISTICS
(LIFE CYCLE)

Functionality Accuracy
Security

Suitability
Interoperability
Compliance
Compatibility

Reliability Recoverability Maturity
Usability Learnability

Understandability
Operability
Complexity

Efficiency Time behaviour
Resource behaviour

Maintainability Changeability
Testability

Table 3: COTS Quality Model

CHARACTERISTICS SUB-CHARACTERISTICS
(RUN TIME)

SUB-CHARACTERISTICS
(LIFE CYCLE)

Functionality Accuracy
Securitysss

Suitability
Interoperability
Compliance
Compatibility

Reliability Recoverability Maturity

Usability Learnability
Understandability
Operability
Complexity

Efficiency Time behaviour
Resource behaviour

Maintainability Changeability
Testability

Table 4: Component Quality Attributes for Sub-characteristics at Runtime

SUB-CHARCTERISTICS ATTRIBUTES METRICS KIND OF
METRICS

RESULT

Accuracy Correctness Test results/Precision R 1

Recoverability Error handling Mechanism
implemented

P 1

Time behavior Response time Time taken between a
set of invocations

IV 0

Resource behavior 1)Memory
usage
2)Disk usage

1)Memory used
2)Disk used

IV
IV

1
1

I.J.E.M.S., VOL.3(2) 2012: 109 - 114 ISSN 2229-600X

113

Table 5: Component Quality Attributes for Sub-characteristics at Life cycle

SUB-CHARACTERISTICS ATTRIBUTES METRICS KIND OF
METRICS

RESULT

Suitability Pre & post
conditions

Verification of pre & post
conditions

P 1

Maturity Failure removal Number of bugs fixed IV 0

Understandability Document
available

Document analysis P 1

FIGURES

Figure 1: GUI for AI back propagation network commands

Figure 2: Snap shot for working of AI back propagation algorithm

Quality metrics implementation in component based software engineering using ai back propagation algorithm

114

Figure 3: AI Back Propagation component

.

