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ABSTRACT
A critical issue for multiprocessor SOCs that has received very little attention is the question of how the removal of chip
boundaries might change the design of the multiprocessor system, including both the design of the components as well as how
they are integrated. Since it was the fact that an entire processor could be placed on a single chip—thereby removing long
intraprocessor signaling delays--that spurred the microprocessor revolution, it seems possible that removal of packaging
boundaries might cause a similar paradigm shift with multiprocessors. At the very least, there is likely to be a major shift in the
design space as the distribution of propagation delays and the ratio of propagation delay to switching time is fundamentally
altered. In this paper, a large number of parallel processor network router designs are made and compared in terms of cycle-by-
cycle performance, cell area, and cycle time. Although these designs are directed to parallel processor networks for use on a
single substrate, they are also applicable to other design situations. The designs are based on a single basic design framework
with a large number of different options. By comparing the designs that result from these options, a designer can make
deductions about the relative cost and performance benefits of particular options and make decisions about which design to use
for his particular situation
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INTRODUCTION

A recent trend in high performance computing (HPC) has
been towards the use of parallel processing to solve
computationally-intensive problems. Several parallel
architectures, which offer corresponding increases in
performance as the number of processors is increased, have
been designed in the last few years. Nowadays, with the
enormous transistor budgets of 45-nm and 32- nm
technologies on a silicon die, it is feasible to place large
CPU clusters on a single chip (System on Chip, SoC) [15]
[16] allowing both large local memories and the high
bandwidth of on-chip interconnection. Using this chip-scale
multiprocessing, the number of processors on a chip may in
the near future scale to dozens or hundreds, depending on
their complexity. The basic requirement for building such a
SoC turned out to be the low power consumption, in order
that system parts could be close together and communication
time would be thus minimized. For the same reason, the
CPU cores should be simple and processing nodes should be
interconnected as effectively as possible.

Buses and point-to-point connections are the main
means to connect the components. Buses can efficiently
connect 3-10 communication partners but they do not scale
to higher numbers. Even worse‚ they behave very
unpredictably, as seen from an individual component‚
because many other components also use them. A second
problem comes from the physics of deep submicron
technology. Long‚ global wires and buses become
undesirable due to tight timing constraints and skew control‚
high power consumption and noise phenomenon.

As a consequence‚ in 1999 several research groups started to
investigate systematic approaches to the design of the
communication part of SoCs. This research area has been
called Network on Chip (NoC) [14][15][17]. A NoC is
constructed from multiple point-to-point data links
interconnected by switches (routers), so that messages can
be relayed from any source module to any destination
module over several links by making routing decisions at the
switches. Although NoCs can borrow concepts and
techniques from the well-established domain of computer
networking, it is impractical to blindly reuse features of
"classical" computer networks and symmetric
multiprocessors[14]. In particular, NoC switches should be
small, energy-efficient, and fast. The routing algorithms
should be implemented by a simple logic, and the number of
data buffers should be minimal. These requirements have
converged on the use of pipelined, distance-insensitive
wormhole (WH) message switching and source-based
routing algorithms.

There are several examples of NoCs that have found
applications in the commercial sphere at the present time.
One of the leaders in this area is Tilera Corporation that has
introduced Tilera Tile- Gx processor family with 16 to 100
full-featured processing cores interconnected by a 2D mesh.
Other compact high performance systems were produced by
SiCortex, Inc. This vendor has offered highly compacted
systems based on unidirectional Kautz networks and
scalable up to 5832 cores with only 20kW of power
consumption. Also IBM has brought its solution called IBM
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Cell broadband engine on the market. This multimedia chip
integrates a Power PC processor and 8 SPE elements
interconnected by a ring NoC called Element
Interconnection Bus. The chip has found many commercial
applications not only in the gaming industry , but also in the
second most powerful supercomputer in the world called
Roadrunner. Similarly, Intel is working on its own NoC
solution under the project Intel Tera-scale research program
(Larabee). The goal of the project is to design a NoC with
1TFLOP performance composed of about 80 cores
interconnected by either a mesh topology or a hierarchical
ring topology. The small scale system can be also based on
common AMD Opteron and Intel Nehalem architecture
processors. The Network on Board is then created using
HyperTransport or QuickPath links into bidirectional rings
or hypercubes (AMD Direct Connect Interconnection). And
this is only the beginning of the NoC area. Many other
implementations will certainly come into existence in the
next years.

In order to be able to utilize the performance of such a
SoC, the parallel programming paradigms have to be taken
into account. Provided that computation times of executed
tasks are known, as is usually true in case of application-
specific systems, the only thing that matters in obtaining the
highest performance are durations of various collective
communications. Some embedded parallel applications, such
as network or media processors, are characterized by
independent data streams or by a small amount of inter-
process communications. However, many general-purpose
parallel applications display a bulk-synchronous behavior:
the processing nodes access the network according to a
global, structured communication pattern. Examples of
collective communication (CC) patterns include broadcast,
in which a message is sent from one process to all the other
processes in a group; global combine, in which a global
operation, such as maximum or sum, is performed on a
distributed set of data items; and barrier synchronization, in
which every member of a set of processes must reach a
given point in its execution before any member can proceed.
The growing interest in the use of collective routines is
evidenced by their inclusion in the Message Passing
Interface (MPI) standard and by their increasing role in
supporting data-parallel languages. Many existing SoCs do
not support collective operations in hardware. In these
environments, collective operations must be supported in
software by sending multiple point-to-point messages. Such
implementations are termed unicast-based and typically are
implemented as a sequence of synchronized steps, each of
which involves the sending of one or more messages among
processes. However, in situations where many messages
exist in the network concurrently, a large internode distance
can lead to contention among messages. Therefore, unicast-
based collective operations, which typically involve many
messages, should be designed so that they not only minimize
the number of message-passing steps, but also minimize or
eliminate contention among the constituent messages.

At present, many different universal topologies of

interconnection networks are in use and other application-
specific ones can be created on demand. While the time
complexity of certain communication patterns has a lower
bound given by a particular interconnection, finding a
sequence of communication steps (a schedule) approaching
this limit is more difficult, and in some cases, such schedules
are not known as of yet.

Naturally, many projects have addressed the design of
fast collective communication algorithms for wormhole-
switched systems in recent years. Since any data loss is not
acceptable in NoC, the deadlocks, livelocks and starvations,
even links/node overloads, have to be prevented in such
schedules. Hence, many approaches have analyzed the
structure and properties of underlying NoC topology and
communication pattern with the aim of designing
contention-free communication schedules that attain the
lower bound of time complexity of given CC patterns.
Unfortunately, these schedules are not general at all, and
only work for a few regular topologies like hypercube or
square mesh/tours even then in only a couple of possible
instances. Another idea is to design some families of
parameterized algorithms that can be tuned to perform well
on different architectures under various system conditions.
Unfortunately, this kind of CC schedules is not optimal in
most cases, and moreover they are restricted by other
parameters of the NoC such as port model, minimal routing
strategy, symmetry of the network and so on.

With an increasing number of novel NoC topologies
(e.g. spidergon, Kautz, fat topologies) a hunger for a general
technique capable to produce optimal or near optimal
schedules for an arbitrary network topology and a given CC
pattern steadily grows. The designed schedules could serve
for writing high-performance communication functions for a
concrete topology. Consequently, these functions could be
included into, for example, a well-known OpenMPI library
to accelerate given CCs and prevent data losses.

PROBLEM AND MOTIVATION
The problem we address in this paper is the design of a
network appropriate for a single chip multiprocessor. This
problem is important because the changing ratio of switching
to propagation time is likely to have a significant effect on
the relative benefits of various design choices. The single-
chip assumption is also interesting from a methodological
standpoint as it allows us to use standard workstation EDA
tools for accurate circuit-level simulations. When these are
combined with cycle-level simulations as we do in this
paper, it becomes possible to examine a large number of
design alternatives without compromising accuracy.

LITERATURE REVIEW
Although there has been extensive work in the area of switch
design and multiprocessor networks, relatively few studies
include hardware costs, either in their effect on chip area or
on operating frequency. Of the studies that do pay attention
to cost, even fewer do so quantitatively, or for more than one
particular implementation of a design.

An exception is Chien [1, 6], who has performed a
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detailed hardware cost and operating frequency analysis for
a particular class of routers in terms of the number of inputs
or outputs, number of virtual channels and routing freedom.
But, this analysis does not account for some of the options
we would like to consider such as virtual cut-through
routing, unidirectional vs. bidirectional switches, the varying
buffer sizes, dynamic buffer sharing between lanes and does
not address the network performance achieved by varying
these parameters. Another gap is that virtual cut-through
switching has not been explored to nearly the extent of
wormhole switching. This is especially important since even
a preliminary glance at the problem of low-cost networks,
points to virtual cut-through as a way of cutting down on the
number of virtual channels and thereby getting more switch
for your silicon. Some that do, Duato et al [12], do not
perform a hardware cost analysis or have a design that is not
suited for our particular environment.

We are designing for an environment where the node to
node delay is very small because the nodes are on the same
chip and are placed adjacent or very near their
communication neighbors. Little work has been done for this
environment. (Even Dally’s Torus Routing Chip [10] had
off- chip delays between nodes and couldn’t operate faster
than the off-chip and wire delays.) The Abacus SIMD Array
[4] is one that uses network nodes on the same chip, but this
network is much too simple for our purposes.

Much work is done for nodes that are more featured and
complex than we use. The SP2 is an example. Its design is
more complex than we use and that makes the operating
frequency lower than we are able to achieve. The SP2
design uses this complexity to increase its performance for
its particular environment and this is good. The reason is that
the SP2 has very long node to node delays and even with
extensive pipelining one could not possibly achieve the
small cycle times we do for our design. So the additional
complexity probably does not affect the operating frequency.

THE BASIC MODEL
We envision these multiprocessors on a chip as having
dozens of nodes on a silicon substrate, increasing to
hundreds as technology allows. Such a chip would have an
array of processor node pairs, each with a connection to near
neighbors. All processor-to-processor data transfers take
place in the network nodes using the following scenario: i)
the source processor transfers the data packet to its
associated network node, ii) the packet is transferred from
network node to network node until it reaches the destination
network node, and iii) the packet is then transferred from the
destination network node to its associated processor. All
processor instruction and control transfers are outside the
network and we do not consider them here. The design of
the off-chip connections depends on the details of the design
external to the chip and the particular pin constraints of the
chip’s package. Since this is very design specific we do not
consider the details here, except to note that the off-chip
connections are allowed for in our designs.

While designs with (2N)2 nodes, and array of 2N on a side,

may be easier to program than other sizes, our designs do not
depend on any particular size. But, our simulated
performance is only applicable for designs with the same
number of nodes on each side. The following figure shows
at a high level how such a chip might be organized.

Figure 1. Sample Chip Organization

Because the processors and network nodes are on a single
chip and arranged in a 2 dimensional array with short
interconnections, the data transfer between one node to
another is very fast. This, combined with the network nodes’
simple and efficient design, presents the opportunity for a
design with a short cycle time, and therefore, high
performance. The regular organization of the chip simplifies
the design and testing of the actual implementation. We
assume small fixed size packets and deterministic routing.
The routers’ designs are allowed to take advantage of this
particular environment whenever possible. The resulting
routers are simple, low-cost, and suitable for parallel
processor systems on a single substrate.

We generally assume input buffering, but to be sure that
we are not going down the wrong path, we also study a
design that has output buffering. Output buffering has higher
performance when considering network throughput per
cycle, but the design is more complex and managing the
buffer at the output results in a much longer critical path. To
see whether the increase in throughput per cycle
compensates for the increase in cycle time we evaluate a
network with nodes with output queuing, similar to the IBM
SP2 design, but which still taking advantage of our
particular environment.

METHODS
Because our focus is how to build an embedded network for
single chip coprocessors, we concentrate on low-cost, cost-
effective mechanisms: The routing is deterministic
dimension order. The topology is either a 2D mesh or torus.
A single physical channel exists between nodes per direction
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per dimension. The packets are small and have fixed size, 6
and 24 flits in our experiments. These sizes approximate
transfers of single words or cache lines.

Even so, there are still a large number of router design
options to consider: These include:
• Whether the switching mode is wormhole (WH) or

virtual cut-through (VCT)
• Whether the connections are unidirectional or

bidirectional
• Whether the crossbars are full or cascaded
• The optimal number of virtual lanes per channel.
• The optimal FIFO buffer size.
• Whether to share FIFO buffer space for more than 1

lane in the same RAM.

We evaluate the design alternatives in terms of both the cost
in chip area and the performance in terms of effect on
network capacity and operating frequency. This requires
using three different methods, which are now described.

To determine network capacity, we use a cycle-driven
simulator and simulate a network of reasonable size, 8 by 8.
We determine network capacity by assigning injectors a
fixed capacity (load) and run enough cycles to determine if
the network saturates with this load. We believe our method
is more representative of real systems, even if it requires
more computer time per design. A simulation run consists of
a single network type / load / routing pattern / packet size
combination. After performing multiple runs with different
loads, we determine the network capacity in terms of
flits/node/cycle. The routing patterns we use for
performance evaluation are standard synthetic patterns:
random, hot-spot, and near-random.

To determine cell area we represent the designs in
Verilog High-level Design Language, HDL, then perform
logic synthesis targeting LSI Logic’s G10-p 0.18 micron
technology. The logic synthesis package we use, from
Synopsys, is very good at deriving a design with optimum
cell area. Not all designs are evaluated completely; we take
advantage of the hardware design’s modularity to evaluate
some of the modules separately. For example, the number of
ports in the output queue can be evaluated for many design
points and a formula for cell area based on the number of
ports generated. These formulas are used in the designs
instead of generating a complete Verilog HDL for each
design option. Combining these formulas yields a cell area
for each design option.

To determine cycle time, the designs are evaluated and
critical paths determined manually. The logic design
involving these critical paths is done by hand and timed
using gate delay for the target technology. We do this
manually because the logic synthesis package we use, from
Synopsys, is not very good at deriving a design with
optimum timing.

CYCLE-LEVEL NETWORK SIMULATION
We use a register transfer level simulator to measure capacity
and latency. Since our designs are synchronous, the simulator
can be cycle-driven and validation with the hardware model

is simple. We assume an internode routing time of one cycle.
We use three communication patterns: random, hot-spot,

and random-near. For the random load, all destinations are
equally probable. For the hot-spot load, we use a similar
scheme as described in [3], four destinations are four times as
likely as the others. For the near-random load, the coordinates
of the destination are chosen independently for each
dimension, likelihood of a destination is inversely proportional
to its distance from the source. We use two packet sizes, 6 flits
and 24 flits. These sizes were chosen to represent the transfer
of a word and a small cache line transfer, respectively. Also,
the smaller packets typically span a small number of nodes in
transit while the larger packets span the entire path through the
network. Together they offer two qualitatively different
workloads.

The load is presented in terms of the expected number of
flits injected per node per cycle. We prefer this measure to that
of fraction of overall capacity in that it forces separate
evaluation for each communication pattern. Our primary
choice of performance measure is network load capacity. One
reason for this is its intrinsic importance. The other is the
observation, repeated numerous times, that the switching
mode, buffer size, number of lanes, and other parameters
which are the objects of this study all have only a small effect
on latency until saturation is approached and then the effect is
quite predictable [12]. The latency/load graph in Figure 2
depicts this effect. There are three `bundles' of series: one each
for unidirectional WH, bidirectional mesh WH, and
bidirectional torus WH. The bundles are formed around
configurations with matching internode bandwidth.

The bidirectional and unidirectional VCT series, if shown,
would be superimposed on their WH counterparts. Within each
bundle, the capacity measure, which indicates where the series
becomes vertical, is therefore sufficient to characterize the
particular series. A run consists of a single combination of
network, load, communication pattern, and packet size. A run
terminates either after 80,000 cycles or when the network goes
into saturation. The first 50,000 cycles are used for transient
removal; thereafter latencies are recorded. Generally, steady-
state is reached after only a few thousand cycles: the extra
cycles are used to increase the sensitivity of the saturation
point measurement by making it more likely that a network
running even slightly above capacity will saturate. Saturation is
determined to have taken place if the injector queue of any
node overflows its capacity of 200 flits. This criterion is
justified because it can only be caused by prolonged back
pressure that is very unlikely to be caused by a local hotspot
created in a load significantly less than the saturation point.
Each combination of network, communication pattern, and
packet size was simulated with respect to a number of loads
(typically 12-15) which converged about the saturation point.
Thus most of the latency/load points recorded are at and
beyond the knees of the latency/load graphs where maximum
sensitivity is required. The maximum load that does not cause
saturation is determined to be the capacity of the network. The
standard deviation on the capacity measure was found to be
.011 flits per node per cycle.
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Figure 2 Shown is a graph of latency versus applied load for a number of switching designs with the random communication
pattern and a packet size of 5 flits. Measurements were taken using the RTL simulator. The three ‘bundles’ of series correspond
to the unidirectional torus wormhole, the mesh wormhole, and the bidirectional wormhole configurations respectively.

RESULTS
The results we present in this paper include some key
observations about virtual cut-through routing, performance
of the designs with a cycle-driven simulator, router cell area,
and router cycle time analysis. The results presented show
the effect of these options on the routers’ cell area and cycle
timing when mapped into a current generation 0.18 micron
technology, LSI Logic’s G10-p Cell-Based ASIC
technology.

This work adds to previous studies in that it accounts for:
• Variations in the number of lanes in the VCT

configurations.
• Not only bidirectional tori, but meshes and

unidirectional tori are considered.
• Deadlock and timing considerations unique to VCT.
• Static virtual channel selection versus dynamic lane

selection methods.
• Both physical properties, such as critical path timing

and layout area, and latency/bandwidth results from
register transfer level simulations.

Some of the key results we present are:
• Lanes are as useful to VCT networks as they are to

wormhole networks.
• When operating frequency is factored in, increasing the

number of lanes beyond 2 per physical channel is not
likely to be cost effective.

• For equal numbers of buffers and space per buffer, VCT
switching is likely to have better performance than WH
switching. The reason is that the space guarantee

associated with VCT switching is easy to implement for
small packets and has powerful consequences in load
balancing among lanes and, to a lesser extent, flow
control latency.

• All the designs described are evaluated with respect to
area/performance for each workload and the cost-
effective ones enumerated.

• While investigating the design framework, it was
necessary to work out some issues that are themselves
contributions. These are:

• Observations about VCT deadlock and how to prevent
it.

• The application of virtual channel load balancing to
unidirectional WH torus networks.

CONCLUSION
In this work we have endeavored to exhaustively explore the
design space of low-cost multicomputer networks including
issues in switching, lane selection, buffer size, topology,
routing algorithm, and packet size. Virtual Cut-Through is
examined and found to be both more and less like Wormhole
switching than previously described. More in that virtually all
of the critical hardware including multi-lane channels can be
identical to that of WH switches. Less in that VCT has its
own deadlock issues and is open to a different lane selection
paradigm. It has been stated elsewhere that VCT versus WH
routing is a tradeoff between buffering and congestion. We
suggest that for small packets and equal buffering, it is really
mostly the difference between static and dynamic lane
selection.
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