
I.J.E.M.S., VOL.3(3) 2012: 260-271 ISSN 2229-600X

260

PARALLELIZATION OF DATA INTENSIVE CODE USING COMPUTER
UNIFIED DEVICE ARCHITECTURE (CUDA)

1 Bhardwaj Aditi, 2Bhardwaj Rohatash. K. 2Shishir .K. Gangwar
1College of Technology, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar

2College of Agriculture,Mekelle University , Mekelle Ethiopia
.

ABSTRACT
Parallel processing is a form of computation in which many calculations are carried out simultaneously, operating on the
principle that large problems can often be divided into smaller ones, which are then solved concurrently. Parallelism has been
employed for many years, mainly in high-performance computing. As power consumption by Computer has become a concern
in recent years, parallel computing has become the dominant paradigm in Computer structural design, mainly in the form of
multi-core processors. Parallel Computer programs are more difficult to write than sequential ones. CUDA (an acronym for
COMPUTER Unified Device Architecture) is a parallel computing architecture developed by NVIDIA. CUDA gives
developers access to the virtual instruction set and memory of the parallel computational elements in CUDA GPUs. Using
CUDA, the latest NVIDIA GPUs become accessible for computation like CPUs.GPU computing or GPGPU is the use of a
GPU (graphics processing unit) to do general purpose scientific and engineering computing. RNA is made up of a long chain
of components called nucleotides. Each nucleotide consists of a a nitrogenous base, a ribose sugar, and a phosphate group. The
sequence of nucleotides allows RNA to encode genetic information. The chemical structure of RNA is very similar to that of
DNA, with two differences (a) RNA contains the sugar ribose while DNA contains the slightly different sugar deoxyribose (b)
RNA has the uracil while DNA contains thymine. In this an attempt is being made to COMPUTER RNA Secondary structure
algorithm in parallel using CUDA architecture, COMPUTER the time of execution on CPU and GPU. And compare the
different RNA sequences for further scientific advancements.

KEYWORDS: Computer, Parallel Programming and Processing, CUDA, RNA, Graphics processors, GPU.

INTRODUCTION
The recent switch to parallel microprocessors is a milestone
in the history of computing. Industry has laid out a roadmap
for multi-core designs that preserves the programming
paradigm of the past via binary compatibility and cache
coherence. Conventional wisdom is now to double the
number of cores on a chip with each silicon generation. A
multidisciplinary group of Berkeley researchers met nearly
two years to discuss this change. Our view is that this
evolutionary approach to parallel hardware and software
may work from 2 or 8 processor systems, but is likely to face
diminishing returns as 16 and 32 processor systems are
realized, just as returns fell with greater instruction-level
parallelism.

Parallel Processing
Parallel processing is a form of computation in which many
calculations are carried out simultaneously, operating on the
principle that large problems can often be divided into
smaller ones, which are then solved concurrently ("in
parallel"). There are several different forms of parallel
computing: bit-level, instruction level, data, and task
parallelism. Parallelism has been employed for many years,
mainly in high-performance computing, but interest in it has
grown lately due to the physical constraints preventing
frequency scaling. As power consumption (and consequently

heat generation) by Computer has become a concern in
recent years, parallel computing has become the dominant
paradigm in Computer architecture, mainly in the form of
multi-core processors.
Classification: Parallel Computer can be roughly classified
according to the level at which the hardware supports
parallelism with multi-core and multi-processor Computer
having multiple processing elements within a single machine,
while clusters, MPPs, and grids use multiple Computer to
work on the same task. Specialized parallel Computer
architectures are sometimes used alongside traditional
processors, for accelerating specific tasks.

Challenges: Parallel Computer programs are more difficult
to write than sequential ones, because concurrency
introduces several new classes of potential software bugs, of
which race conditions are the most common.
Communication and synchronization between the different
subtasks are typically one of the greatest obstacles to getting
good parallel program performance.

CUDA (Computer Unified Device Architecture)

CUDA (Computer Unified Device Architecture) is a parallel
computing architecture developed by NVIDIA. CUDA is the
computing engine in NVIDIA graphics processing units
(GPUs) that is accessible to software developers through



Parallelization of data intensive code using computer unified device architecture (CUDA)

261

variants of industry standard programming languages.
Programmers use 'C for CUDA' (C with NVIDIA extensions
and certain restrictions), compiled through a Path Scale C
compiler, to code algorithms for execution on the GPU.
Architecture: CUDA provides both a low level API and a
higher level API. The initial CUDA SDK was made public
on 15 February 2007, for Microsoft Windows and Linux.
Mac OS X support was later added in version 2.0, which
supersedes the beta released February 14, 2008. CUDA
works with all NVIDIA GPUs from the G8X series onwards,
including GeForce, Quadro and the Tesla line. NVIDIA
states that programs developed for the GeForce8 series will
also work without modification on all future NVIDIA video
cards, due to binary compatibility.
Accessibility: CUDA gives developers access to the virtual
instruction set and memory of the parallel computational
elements in CUDA GPUs. Using CUDA, the latest NVIDIA
GPUs become accessible for computation like CPUs. Unlike
CPUs however, GPUs have a parallel throughput
architecture that emphasizes executing many concurrent
threads slowly, rather than executing a single thread very
quickly. This approach of solving general purpose problems
on GPUs is known as GPGPU.
Applications: In the Computer game industry, in addition to
graphics rendering, GPUs are used in game physics
calculations (physical effects like debris, smoke, fire, fluids);
examples include PhysX and Bullet. CUDA has also been
used to accelerate non-graphical applications in
computational biology, cryptography and other fields by an
order of magnitude or more. An example of this is the
BOINC distributed computing client.
GPU (Graphics Processing Unit): GPU computing or
GPGPU is the use of a GPU (graphics processing unit) to do
general purpose scientific and engineering computing.
Evolution: The GPU has evolved over the years to have
teraflops of floating point performance. NVIDIA
revolutionized the GPGPU and accelerated computing world
in 2006-2007 by introducing its new massively parallel
architecture called “CUDA”. The CUDA Architecture
consists of 100s of processor cores that operate together to
crunch through the data set in the application.
Model: The model for GPU computing is to use a CPU and
GPU together in a heterogeneous co-processing computing
model. The sequential part of the application runs on the
CPU and the computationally-intensive part is accelerated
by the GPU. From the user’s perspective, the application just
runs faster because it is using the high-performance of the
GPU to boost performance. GPGPU is a general purpose
graphic processing unit and operates in parallel to CPU in
order to simplify the execution of the code.
Application: The success of GPGPUs in the past few years
has been the ease of programming of the associated CUDA
parallel programming model. In this programming model,
the application developers modify their application to take
the COMPUTER-intensive kernels and map them to the
GPU. The rest of the application remains on the CPU.
Mapping a function to the GPU involves rewriting the
function to expose the parallelism in the function and adding
“C” keywords to move data to and from the GPU. The

developer is tasked with launching 10s of 1000s of threads
simultaneously. The GPU hardware manages the threads and
does thread scheduling.
RNA STRUCTURE: Like DNA, RNA is made up of a long
chain of components called nucleotides. Each nucleotide
consists of a nucleobase (sometimes called a nitrogenous
base), a ribose sugar, and a phosphate group. The sequence
of nucleotides allows RNA to encode genetic information.
For example, Some viruses use RNA instead of DNA as
their genetic material, and all organisms use messenger RNA
(mRNA) to carry the genetic information that directs the
synthesis of proteins.

Like proteins, some RNA molecules play an active role in
cells by catalyzing biological reactions, controlling gene
expression, or sensing and communicating responses to
cellular signals. One of these active processes is protein
synthesis, a universal function whereby mRNA molecules
direct the assembly of proteins on ribosomes. This process
uses transfer RNA (tRNA) molecules to deliver amino acids
to the ribosome, where ribosomal RNA (rRNA) links amino
acids together to form proteins. The chemical structure of
RNA is very similar to that of DNA, with two differences (a)
RNA contains the sugar ribose while DNA contains the
slightly different sugar deoxyribose (a type of ribose that
lacks one oxygen atom), and (b) RNA has the nucleobase
uracil while DNA contains thymine (uracil and thymine
have similar base-pairing properties).

Background Study

Parallel Computing: The interest in parallel computing
dates back to the late 1950’s, with the advancements
surfacing in the form of superComputer throughout the 60’s
and 70’s. These were shared memory multiprocessors, with
multiple processors working side-by-side on shared data. In
the mid 1980’s a new kind of parallel computing was
launched when the Caltech concurrent computation project
built a superComputer for scientific applications from 64
Intel 8086/8087 processors. This system showed that
extreme performance could be achieved with mass market,
off the shelf multiprocessors. These massively parallel
processors (MPP) came to dominate the top end of
computing, with the ASCI Red superComputer in 1997
breaking the barrier of one trillion floating point operations
per second. Since then MPPs have continued to grow in size
and power. Starting in the late 80’s, clusters came to
complete and eventually displace MPPs for many
applications. A cluster is a type of parallel Computer built
from large numbers of off the shelf Computer connected by
an off the shelf network. Today, Clusters are the workhorse
of scientific computing and are the dominant architecture in
the data centers that power the modern information age.
Today, parallel computing is becoming mainstream based on
multi-core processors. Most desktop and laptop systems now
ship with dual-core multiprocessors, with quad-core
processors readily available. Chip manufacturers have begun
to increase overall processing performance by adding
additional CPU cores. The reason is that increasing
performance through parallel processing can be far more
energy-efficient than increasing multiprocessor clock



I.J.E.M.S., VOL.3(3) 2012: 260-271 ISSN 2229-600X

262

frequencies. In a world which is increasingly mobile and
energy conscious, this has become essential. Fortunately, the
continued transistor scaling predicted by Moore’s will allow
for a transition from a few cores to many. The software
world has been very active part of the evolution of parallel
computing. Parallel programs have been harder to write than
sequential ones. A program that is divided into multiple
concurrent tasks is more difficult to write, due to the
necessary synchronization and communication that needs to
take place between those tasks. Some standards have
emerged. For MPPs and clusters, a number of application
programming interfaces converged to a single standard
called MPI by the mid 1990’s. For shared memory
multiprocessor computing, a similar process unfolded with
convergence around two standards by the mid to late 1990’s:
Pthreads and OpenMP. In addition to these a multitude of
competing parallel programming models and languages have
emerged over the years. Some of these models and
languages may provide a better solution to the parallel
programming problem than the above “standards”, all of
which is modifications to conventional, non-parallel
languages like C. As multi-core processors bring parallel
computing to mainstream customers, the key challenge in
computing today is to transition the software industry to
parallel programming. The long history of parallel software
has not revealed any “silver bullets”, and indicates that there
will not likely be any single technology that will make
parallel software ubiquitous.

CUDA Computing: CUDA is NVIDIA’s parallel
computing architecture. It enables dramatic increases in
computing performance by harnessing the power of the GPU.
With millions of CUDA-enabled GPUs sold to date,
software developers, scientists and researchers are finding
broad-ranging uses for CUDA, including image and video
processing, computational biology and chemistry, fluid
dynamics simulation, CT image reconstruction, seismic
analysis, ray tracing, and much more computing is evolving
from "central processing" on the CPU to "co-processing" on
the CPU and GPU. To enable this new computing paradigm,
NVIDIA invented the CUDA parallel computing
architecture that is now shipping in GeForce, Quadro, and
Tesla GPUs, representing a significant installed base for
application developers. In the consumer market, nearly every
major consumer video application has been, or will soon be,
accelerated by CUDA, including products from Elemental
Technologies, MotionDSP and LoiLo, Inc.CUDA has been
enthusiastically received in the area of scientific research.
For example, CUDA now accelerates AMBER, a molecular
dynamics simulation program used by more than 60,000
researchers in academia and pharmaceutical companies
worldwide to accelerate new drug discovery. In the financial
market, Numerix and CompatibL announced CUDA support
for a new counterparty risk application and achieved an 18X
speedup. Numerix is used by nearly 400 financial
institutions.

Figure 1: Processing Flow in CUDA Architecture

GPU Computing: Graphics chips started as fixed function
graphics pipelines. Over the years, these graphics chips
became increasingly programmable, which led NVIDIA to
introduce the first GPU or Graphics Processing Unit. In the
1999-2000 timeframe, Computer scientists in particular,
along with researchers in fields such as medical imaging and
electromagnetic started using GPUs for running general
purpose computational applications. They found the
excellent floating point performance in GPUs led to a huge
performance boost for a range of scientific applications. This
was the advent of the movement called GPGPU or General
Purpose computing on GPUs. The sequential part of the

application runs on the CPU and the computationally-
intensive part is accelerated by the GPU.

Figure 2: Multi-core and Many-core processors



Parallelization of data intensive code using computer unified device architecture (CUDA)

263

The problem was that GPGPU required using graphics
programming languages like OpenGL and Cg to program the
GPU. Developers had to make their scientific applications
look like graphics applications and map them into problems
that drew triangles and polygons. This limited the
accessibility of tremendous performance of GPUs of
science. NVIDIA realized the potential to bring this
performance to the larger scientific community and decided
to invest in modifying the GPU to make it fully
programmable for scientific applications and added support
for high-level languages like C, C++, and FORTRAN. This
led to the CUDA architecture for the GPU.
RNA Structure: RNA is made up of a long chain of
components called nucleotides. Each nucleotide consists of a
nucleobase (sometimes called a nitrogenous base), a ribose

sugar, and a phosphate group. Each nucleotide in RNA
contains a ribose sugar, with carbons numbered 1' through
5'. A base is attached to the 1' position, in general, adenine
(A), cytosine (C), guanine (G), or uracil (U). Adenine and
guanine are purines, cytosine, and uracil are pyrimidines. A
phosphate group is attached to the 3' position of one ribose
and the 5' position of the next. The phosphate groups have a
negative charge each at physiological pH, making RNA a
charged molecule (polyanion). The bases may form
hydrogen bonds between cytosine and guanine, between
adenine and uracil and between guanine and uracil.
However, other interactions are possible, such as a group of
adenine bases binding to each other in a bulge, or the GNRA
tetraloop that has a guanine–adenine base-pair.

Figure 3 : RNA Helix Structure

The functional form of single stranded RNA molecules, just
like proteins, frequently requires a specific tertiary structure.
The scaffold for this structure is provided by secondary
structural elements that are hydrogen bonds within the
molecule. This leads to several recognizable "domains" of
secondary structure like hairpin loops, bulges, and internal
loops. Since RNA is charged, metal ions such as Mg2+ are
needed to stabilize many secondary and tertiary structures.

PROBLEM SPECIFICATION

Problem Formulation

 The first sub-problem is to configure the system in
order to provide an environment for parallel
processing.

 The second sub-problem is understanding and
implementation of RNA secondary structure
generation using Nussinov-Jacobson Algorithm in
C.

 The third sub-problem is to do Profiling of the
existing algorithm to find the most COMPUTER
intensive block in the algorithm.

 The fourth sub-problem is the Parallelization of
Algorithm using CUDA.

 The fifth and the final sub-problem is to check out
the performance of the parallelized algorithm.

Phase 1: In this phase firstly, CUDA Wizard needed to be
installed along with the CUDA toolkit version 3.0 which
supports EMU debug mode. EMU debug mode is required
for running a parallel program on a system without any GPU
present on it. Secondly, Visual studio 2008 is needed to be
installed for integrating the functionalities of NVIDIA and C
compiler. Lastly, GPU computing sdk has to be installed for
providing the library and include files for NVIDIA and
CUDA example codes.
Phase 2: Under this phase RNA structure is being needed to
be understand.RNA molecules often fold back on
themselves, forming stable double-helix structures akin to
the famous DNA double helix, with G-C and A-U pairs
forming, so called Watson-Crick base pairs.
GCCCACCUUCGAAAAGACUGGAUGACCAUGGGC

CAUGAUU
( ( ( ( ( . ( ( ( . . . . ) ) ) . . ( ( ( . . . . ) ) ) ) ) ) ) ) . ( . . . . )



I.J.E.M.S., VOL.3(3) 2012: 260-271 ISSN 2229-600X

264

Nossinov-Jacobsen Algorithm (for Watson-Crick base pairs)

The Nussinov-Jacobsen algorithm, based on the following
recurrence, COMPUTERs, for each 1 < i < j < n the quantity
B[i, j] which is the maximum number of pairs in any folding
of the substring xi xi+1 . . . xj of the input:

B[i,j]=0 ,if i 3 j-4
max [ B[i+1, j-1] + pi,j , max { B[i,k] + B[k+1, j] : i £k < j }
] , if i < j − 4,
Where pi,j = 1, if xi could pair with xj (i.e., G-C or A-U
pairs), and pi,j = 0 otherwise.
B[i, j] is most easily represented as an n by n array, of which
the lower-left triangle will be all zero. Since B[i, j] depends
on entries to its left in the same row and entries below it in
the same column, the convenient order in which to
COMPUTER entries is to fill columns in left to right order,
each column filled from the diagonal upwards. B[1, n] will
hold the maximum number of pairs.

IMPLEMENTATION IN C
The algorithm is implemented by Dynamic Programming in
C. The program takes a RNA sequence from a standard input
prompt.

NOTE: The program doesn't have any input validation
except the maximum length of a RNA sequence, which is
2000. So, user should enter a valid RNA sequence which
consists of G, C, A,
Phase 3: Firstly we divide data intensive code into small
modules. Then on the basis of the time taken by each
module to execute, the priority is being given to most time
taken module over others. This process is called Profiling.
Profiling is a set of techniques for estimating the amount of
time spent in various portions of the program. The size of
the program unit being profiled is (sometimes) called the
granularity. The profile will tell you how much of the
execution time can be attributed to each grain that is being
selected. The output of the profiler indicates what fraction of
the execution time was spent in each grain. Presumably, to
improve the performance the main focus is on the grains that
are taking the most time.
Phase 4: Traditionally, CPU has been optimized to
maximize the performance of a single-thread execution, and
GPU to achieve a high throughput for a small number of
fixed graphics operations. GPUs were generally good at
processing a program with rich data parallelism, while CPUs
were good at handling a program with irregular parallelism.
However, recent trends show convergence of both
Architectures more energy efficient throughput computing
on CPUs and better programmability on GPUs. These days,
such GPUs are called general-purpose GPU (GPU) because
they can be used for non-graphics processing. Still, the
programmability is one of the biggest challenges in GPGPU
computing, CUDA is an extension to C language to ease
parallel programming on NVIDIA’S GPGPUs.
Phase 5: First the code is being executed on the C compiler
CPU. Next it is being executed on NVIDIA C compiler.
Then the difference of the time taken by both compilers is
taken. The output of this difference gives us the performance
increase in the algorithm execution.

METHODOLOGY USED

Methodology for Various Phases
Phase 1: In this phase first the selected RNA secondary
structure algorithm is executed in parallel on the CPU. And
the time of execution is being calculated. Then the same
algorithm is now been executed on GPU. And its time of
execution is also been calculated. The difference between
the time of execution of these two is calculated which give
the measure of performance increase in execution of this
algorithm.
Phase 2: In this phase to further increase the performance of
the execution of the algorithm some modification in the code
is done. These modifications done in while running the code
in NVIDIA compiler increase the performance of the
execution up to a great extent.
Phase 3: This phase is testing phase. In this testing is being
applied on different modules to check for errors if any and
every possible effort is being made to make the code more
precise and efficient.

Approach to Solve Problem

The development strategy that encompasses the process,
methods and tools and the generic phases is called Software
Engineer Paradigm. The software paradigm for software is
chosen based on the nature of the project and application, the
method and tools to be used.

Software development has been characterized as the problem
solving loops in which four distinct stages are encountered:
Status quo, problem definition, technical development and
solution integration.

Figure 4: Problem Solving Loop

Status Quo: This represents the current state of affairs. In
the present scenario, there are many available algorithms
that need to be parallelized. CUDA architecture is one of it
type which provide a platform for parallelization of the
existing algorithm.
Problem Definition: This identifies the specific problem to
be solved. As already defined, problem is divided into three
phases: execution of code on CPU and GPU, modifications
to further increase the performance and testing.
Technical Development: Under this, the problem is solved
through the application of an appropriate technology. Here
CUDA architecture is deployed to create the Environment
used for execution of the algorithm.

Problem
definition

Technical
development

Solution
Integration

Status
Quo



Parallelization of data intensive code using computer unified device architecture (CUDA)

265

Solution Integration: Through this phase the results are
delivered to those who requested the solution in first place.
This problem solving loop applies to software engineering
work at many different levels of resolution. It can be used at
the macro level when the entire application is considered, at
a mid-level when program components are being
engineered, and even at the line of code level.
Process Model Used: There are various software
development models but Spiral Model has been used for
development of this software. The spiral model, originally
proposed by Boehm [BOE88], is an evolutionary software
process model that couples the iterative nature of
prototyping with the controlled and systematic aspects of the
linear sequential model. It provides the potential for rapid
development of incremental versions of the software. Using
the spiral model, software is developed in a series of
incremental releases. During early iterations, the incremental
release might be a paper model or prototype. During later
iterations, increasingly more complete versions of the
engineered system are produced. A spiral model is divided
into a number of framework activities, also called task
regions. Typically, there are between three and six task
regions as depicted in the figure. The methodology for our
project consists of three of such regions.
Planning: In this region the planning was done for the next
steps in the models by analyzing the results produced by the
earlier iteration and the required result of the new iteration.
In the first iteration the planning was done for implementing
the algorithm into a sequential code. The second iteration
needed the planning to be done for the parallelization of the
code developed in the earlier iteration which was followed
by the third iteration in which the parallelized code
generated was applied to calculate the performance increase
due to the parallelization and again in the fourth and the final
iteration the parallelized code was implemented to calculate
the match percentage of two different sequences of RNA
being entered.

Risk analysis: One of the advantages of the spiral model is
that it places the risk reduction mechanism in place. This
task region is highly required for the comparison of two
RNA sequences as it required by user for the testing of
various vaccines to be used on human beings and if the
project produces any vague results it can lead to the use of
inappropriate vaccines for human beings and hence it is very
risky and along with each iteration it is made to be sure that
the result calculated at the end of each iteration is correct. In
the first iteration the result calculated is the secondary
structure of the RNA sequence being entered and it has to be
correct and in order to make sure small sequences are
entered as an input and the result is calculated manually and
also by using the code implemented and these two results are
then compared to check the righteousness of the code. The
result generated at the end of the second iteration is
compared with the result of first iteration to make sure that
the sequence generated by the parallelized function is the
same as the one generated by the sequential function. For the
third iteration the risk is lower as the time computation does
not affect the result for the matching of the two strings while
for the fourth iteration the risk is very high as the sequences
should be matched correctly and the result should be
declared taking into account the risk factors involved.
Engineering: This task region includes the building of
application for each iteration. For the first iteration the
algorithm used is sequentially implemented using C. In the
second iteration the changes are made to parallelize the
COMPUTER intensive function of the sequential code from
the earlier iteration. The third iteration requires the inclusion
of time function using the clock class for the host code and
cuda Events class for the device code for the calculation of
both CPU and GPU timings. The fourth and final iteration
requires adding the function for matching two sequences of
RNA secondary structure generated and calculating the
percentage of sequences being matched.

Figure 5. Spiral Model



I.J.E.M.S., VOL.3(3) 2012: 260-271 ISSN 2229-600X

266

REQUIRMENT ANALYSIS
This chapter describes the transformation of requirement
specification to feasibility study. After collecting all the
requirements of the user, feasibility of the software is
determined. This phase ensures that all the requirements are
mapped to the design phase.
Hardware requirements of the project
Following are the hardware requirements of the project to
take input:

Hardware Needed:
1. HP Proliant Servers   2. HP SL390 G7 4U

Hardware Used:
1. Multiprocessor system.
2. Cache memory of up to 64 MB.
3. NVIDIA Graphic card.

Software Requirements of the project:
1. CUDA toolkit.
2. CUDA Wizard 32 bit.
3. GPU computing sdk.
4. Visual Studio 2008.

Feasibility Study: Feasibility study is the process of
determination of whether or not a process is worth doing.
Feasibility studies are under taken within tight time
constraints and normally culminate in a written and oral
feasibility report. It took 3 weeks to determine feasibility for
this project. Feasibility study helped as a sound basis for
deciding how to precede the project. It helped in taking
decisions such as which software to use, hardware
combinations, etc.
Technical Feasibility: Technical feasibility determines
whether the work for the project can be done with the
existing equipment, software technology and available
personnel. This concerns specifying the equipment and
software that will satisfy the user requirement.

ISSUES IN TECHNICAL FEASIBILITY

Practicality of the Proposed Technology or solution: The
technologies used are mature enough so that they can be
applied to our problems. The practicality of the solution we
have developed is proved with the use of technologies we
have chosen. The technologies such as parallel processing
are still in the phase of development and are quite popular.
With consistent efforts and study these techniques can be
applied in practical terms also.
Availability of the necessary technology: It was first
ensured that whether the required technologies are available
for the project or not. There are many existing computational
intensive algorithm that are needed to be parallelized in
order to improve their performance and reduce their
execution time. Only few of these algorithms have been
parallelized till date.
Availability of the necessary Technical Expertise: This
consideration of technical feasibility is often forgotten
during feasibility analysis. The technology is available but at
the same time skills have to be develop to properly apply
that technology. CUDA Zone is a site available on internet
by the NVIDIA in order to provide all the necessary

expertise required by any CUDA user. There are also video
lectures for CUDA created by the University of Illinois in
collaboration with the NVIDIA Corporation which is helpful
in developing the skills required for using CUDA
architecture.
Economical Feasibility: Economic feasibility determines
whether there are sufficient benefits in creating to make the
cost acceptable, or is the cost of the system too high. This
signifies cost-benefit analysis and savings. On the behalf of
the cost-benefit analysis, the proposed system is feasible and
is economical regarding its pre-assumed cost for making a
system. During economical feasibility test, a balance
between Operational economical feasibilities is maintained,
as the two are conflicting.
For example the solution that provides the best operational
impact for the end user may also be the most expensive and,
therefore, the least economically feasible. For calculating the
development cost, the certain cost categories were evaluated:

(a) Personnel cost
(b) Computer usage
(c) Software cost

Operational Feasibility: Operational feasibility criteria
measure the urgency of the problem (survey and study
phase) or the acceptability of a solution. There are various
aspects of operational feasibility to be considered. These
decide the effectiveness of the system. These measures can
be collectively called PIECES.
 P (Performance):

The parallelization of the algorithm increases the
performance.

 I (Information):
This architecture provide end-users with timely, accurate
and user formatted output.

 E (Economy):
This architecture offer adequate service level and
capacity to reduce the costs.

 C (Control):
This software offer adequate controls to guarantee the
accuracy while generating the RNA secondary structure.

 S (Services):
This project provides desirable reliable service to those
who need it. This software is flexible and expandable.

Design, Implementation and Testing

Design: Design is a meaningful engineering representation
of software that is to be built. It can be traced to the
requirements and at the same time assessed for quality
against a set of predefined criteria for “good” design. A
design pattern is not a finished design that can be
transformed directly into code. It is a description or template
for how to solve a problem that can be used in many
different situations. Design patterns reside in the domain of
modules and interconnections. At a higher level there are
architectural patterns that are larger in scope, usually
describing an overall pattern followed by an entire system.
There are many types of design patterns like:

 Algorithm strategy patterns, addressing concerns related
to high-level strategies describing how to exploit
application characteristic on a computing platform.



Parallelization of data intensive code using computer unified device architecture (CUDA)

267

 Computational design patterns, addressing concerns
related to key computation identification.

 Execution patterns, that address concerns related to
supporting application execution, including strategies in
executing streams of tasks and building blocks to support
ta
sk
sy

nchronization.

Figure 6: Algorithm Strategy Pattern

Implementation strategy patterns, addressing concerns
related to implementing source code to support program
organization, and the common data structures specific to
parallel programming. In designing first of all an algorithm
strategy is needed to be designed. For the Secondary
Structure the algorithm strategy pattern is shown in the
figure that follows. Generation of a RNA sequence using
Nussinov-Jacobson Algorithm in a parallel computing
environment. The input RNA sequence is taken from an
input file and a corresponding initial energy matrix is
generated, a relational matrix is also Computer which
defines the pairing for the various sequence elements. Both
the energy and relational matrices are copied onto the device
memory for the energy matrix to be Computer parallelly on

the GPU. The energy matrix thus Computer is used to form
the secondary structure sequence using dot bracket notation
which is written to the output file.
Computational Design Patterns: In the parallel
programming panorama designing of the computational
design patterns is of utmost importance before
parallelization of the algorithm. This is done by profiling of
the sequential implementation of the algorithm. In the RNA
secondary structure generation using Nussinov-Jacobson
Algorithm the most computation intensive function is found
to be the Computer energy matrix function, the one used for
the computation of the energy matrix which describes the
pairing of the RNA sequence elements.

Figure 7: Computational Design Pattern



I.J.E.M.S., VOL.3(3) 2012: 260-271 ISSN 2229-600X

268

Execution Patterns
Dispatching GPU jobs by the host process is supported by
the CUDA toolkit in the form of remote procedure calling.
The GPU code is implemented as a collection of functions in
a language that is essentially ‘C’, but with some annotations
for distinguishing them from the host code. Source files for
CUDA applications consist of a mixture of conventional
C++ host code plus device functions. The CUDA
compilation trajectory separates the device function from the

host code, compiles the device function using proprietary
NVIDIA compilers, compiles the host code using any
general C/C++ compiler that is available on the host
platform and afterwards embeds the compiled GPU
functions as load images in the host object file. In the linking
stage, specific CUDA runtime libraries are added for
supporting remote SIMD procedure calling and for
providing explicit GPU manipulation such as allocation of
GPU memory buffers.

Figure 8: Execution Pattern

Implementation strategy patterns:
Implementation of an algorithm into a parallel program
requires implementing the algorithm into sequential source
code and then parallelizing the functions needed to be
executed on the device. During host code implementation a
RNA sequence is entered from an input file and the length n
of the sequence is calculated. A matrix of n x n is Computer
in which each ith, jth element describes the pairing of the ith

and jth element of the RNA Sequence which is afterwards
copied to the device memory for the computation of the
energy matrix. During the implementation of device source
code the data structures are required to be defined and
initialized using cuda-malloc in the host source code and are
copied to the device memory using cuda- memcpy function.
The data structure used is a n x n matrix. When the device
function is called the code is copied to the device memory
and the code is executed on the GPU generating the resultant
matrix which is copied back to the host using the cuda-
memcpy function. The result is being displayed and stored in
the result file and the memory allocations are freed using the
cuda-free function.
Implementation: Implementation is transformation of
design phase to coding phase. This chapter describes all the
technologies used in development of the project. And it also
shows the snapshots of database and frames built into the
project.
Configuring the System: Before implementing the
algorithm, a parallel programming environment has to be
set-up using the following components.
Microsoft Visual Studio 2008: Microsoft Visual Studio is
an integrated development environment (IDE) from
Microsoft. It can be used to develop console and graphical
user interface applications along with Windows Forms
applications, web sites, web applications. Visual Studio

supports different programming languages by means of
language services, which allow the code editor and debugger
to support (to varying degrees) nearly any programming
language, provided a language-specific service exists. Built-
in languages include C/C++ (via Visual C++), VB.NET (via
Visual Basic .NET), C# (via Visual C#), and F# (as of
Visual Studio 2010). It also supports XML/XSLT,
HTML/XHTML, JavaScript and CSS. Individual language-
specific versions of Visual Studio also exist which provide
more limited language services to the user: Microsoft Visual
Basic, Visual J#, Visual C#, and Visual C++.
CUDA Toolkit: The CUDA Toolkit has all the development
tools, libraries and documentations you need to create
applications for the CUDA Architecture, including:

1) CUDA C/C++ Compiler
2) GPU debugging and profiling tools
3) GPU Accelerated math libraries
4) GPU Accelerated performance primitives

Hundreds of code samples and supporting documents are
also available in GPU computing sdk.

Coding the Algorithm
After understanding the algorithm and designing the
different modules we need to implement them in C using
Visual Studio which provides an easy interface to implement
C code and provides Graphical User Interface and integrate
the functionalities of NVIDIA compiler and the standard C
compiler. After implementing the code sequentially in C the
most computational intensive parts of the code have to be
parallelized using the CUDA functionalities. The following



Parallelization of data intensive code using computer unified device architecture (CUDA)

269

figures show the code window of visual studio and the build and output windows of the program being implemented.
Implementation of Code:

Figure 9: Visual Studio Source code window
Building of the Project:

Figure 10: Building the window
Execution of Project:



I.J.E.M.S., VOL.3(3) 2012: 260-271 ISSN 2229-600X

270

Figure 11: Output window

Testing: Testing is a set of activities that can be planned in
advance and conducted systematically. In this software
black-box and white-box testing is being used.

Figure 12: Testing

White-Box Testing: White-box testing is a method of
testing software that tests internal structures or workings of
an application. In white-box testing an internal perspective
of the system, as well as programming skills, are required.
The tester chooses inputs to exercise paths through the code
and determine the appropriate outputs. In order to test the
application the code implemented at each level of iteration is
tested by displaying the computations performed within the
structure of the code. The energy matrix being Computer for
all the iterations of the loop are being displayed and the track
of control and calculation is then checked using these
matrices.
Black-Box Testing: Black-box testing is a method of
software testing that tests the functionality of an application
as opposed to its internal structures or workings. Specific
knowledge of the application's code/internal structure and
programming knowledge in general is not required.
Black-box testing attempts to find errors in the following
categories:
(1) Incorrect or missing functions: The correctness of the
applied code is checked by initially entering some small
RNA like sequences and by manually generating the result
and comparing it with the result generated by the program.
(2)Interface errors: The output displayed is checked is it
matches with the actually string   generated and with the
result string stored in the output file.
(3)Behavior or performance errors: Host execution time is
measured using the clock function and the device execution
time is measured using the CUDA class cuda Events. The
timing is then used to calculate the percentage increase in
the performance.

RESULTS AND DISCUSSION

The main motive of paper is to reduce the time of execution
of program thus increasing its performance.

Comparison on the basis of Time of execution

Human skin Cancer Papilloma virus

UGCAAGACACUUCUUUACAAGGAAUGGGGUAAUG
GGGGACACCAUACCAAAUGCAGUCAG
(())((.).((((((()(..))(.)))((()(()(((..).)).).)))).(())))(.)

Time at CPU= 3062000.000 microseconds
Time using GPU= 1528830.000 microseconds
Performance increased=50.07%
Rattus skin Cancer Papilloma virus type 5

AAAAUAAAGUGACUAAUUACUUGACCAGCUUGUC
CUCGCCUACUUCCUUUGCACCUGGGU

((((()(((().)((())(.(())..(()))))..(()...).))..))(())((())))
Time at CPU= 3766000.000 microseconds
Time using GPU= 1884569.625 microseconds
Performance increased=49.95%
From the above example we conclude that time of executing
a code on CPU is considerably greater than that taken while
executing with the help of GPU.
Thus, it can be clearly observed and concluded the
performance of the execution of algorithm is increased
almost by 50%.
MATCHING THE DIFFERENT RNA SEQUENCES

Human skin Cancer Papilloma virus

UGCAAGACACUUCUUUACAAGGAAUGGGGUAAUG
GGGGACACCAUACCAAAUGCAGUCAG

(())((.).((((((()(..))(.)))((()(()(((..).)).).)))).(())))(.)
Rattus skin Cancer Papilloma virus type 1

AUACCUUCGCCAUGUGGAGGAAUAUGAACUACAG
UUUGUGUUUCAACUUUGUAAAAUAAC

(()(((((()((()))))))(()(()(.(()..)))))(()((.((.))(())))))...
Percentage Match= 36.67%
Human skin Cancer Papilloma virus

UGCAAGACACUUCUUUACAAGGAAUGGGGUAAUG
GGGGACACCAUACCAAAUGCAGUCAG

(())((.).((((((()(..))(.)))((()(()(((..).)).).)))).(())))(.)
Rattus skin Cancer Papilloma virus type 2

UCCGAGCGAUUAUUAUUAUGCUCCGGACACGGCG
CAGGACCAAAAAACGGCAGGUCCUUC

((.))(()((()(()(()(()((()))(..)(()))((.)))))(...(().(())))))
Percentage Match= 51.67%



Parallelization of data intensive code using computer unified device architecture (CUDA)

271

Human skin Cancer Papilloma virus

UGCAAGACACUUCUUUACAAGGAAUGGGGUAAUG
GGGGACACCAUACCAAAUGCAGUCAG

(())((.).((((((()(..))(.)))((()(()(((..).)).).)))).(())))(.)
Rattus skin Cancer Papillomavirus type 3

UGUCUAUUUUGCUACCCCCAGUGGAUCCUUGGUG
UCCAGUGAUGGUCAGCUGUUCAACAG

(().(()((()(().....((()(()))(())))...(()(()(())(()).)).)).))
Percentage Match= 38.34%
The above example shows the percentage match between the
RNA sequence of Rattus norvegicus (Rat) and Homo
sapiens (Humans).This matching can be very useful in the
field of medical and scientific research. For example, if the
percentage match is 80% or above the vaccines tested or
experimented on rats could work for humans also.

CONCLUSION AND FUTURE SCOPE
The RNA secondary structure algorithm was selected and
data intensive part of this algorithm was parallelized using
CUDA architecture. Time taken of executing the code on
CPU and GPU were successfully calculated and hence, the
performance increased of execution of the code was
measured.

On the other hand the two different RNA sequences were
also compared. On the basis of the percentage matched it
was concluded that if the percentage match is 80% or above,
the vaccines used on the one species can also be used on the
other.

Future scopes
Any attempt will need to be enough faster than CPU
implementations to justify any sacrifices in quality. Further,
the current CPU code is very well-written and highly
optimized. At this point it seems that effort should be solely
focused on the motion estimation segment of the encoding
process. It represents the majority of the encoding time and
is most suitable for parallelization. The other parts of the
encoding process have complex control flows and many
serial dependencies making them poor choice for CUDA.
We can begin transferring the content for the next frame to
the graphics card while the current frame is encoding. There
is also the question, which we did not answer, as to whether
the down sampling should be performed on the GPU or on
the CPU. While two sequential frames cannot be encoded in
parallel due to the need to have the previously encoded
frame available during parallel processing of the algorithm
as a reference frame, frames reasonably far apart can be
encoded in parallel. This would allow us to achieve higher
occupancy on the GPU.

REFERENCES
Giorgos Vasiliadis, Spiros Antonatos, Michalis
Polychronakis, Evangelos P. Markatos and Sotiris Ioannidis
(September 2008, Boston, MA, USA). "Gnort: High
Performance Network Intrusion Detection Using Graphics
Processors" (PDF). Proceedings of the 11th International
Symposium on Recent Advances in Intrusion Detection
(RAID).

"Linear algebra operators for GPU implementation of
numerical algorithms", Kruger and Westermann,
International Conference on Computer Graphics and
Interactive Techniques, 2005.

S Harding and W Banzhaf. "Fast genetic programming on
GPUs". http://www.cs.bham.ac.uk/wbl/biblio/gp-
html/eurogp07harding.html. Retrieved 2008-05-01.

W Langdon and W Banzhaf. "A SIMD interpreter for
Genetic Programming on GPU
GraphicsCards".http://www.cs.bham.ac.uk/wbl/biblio/gp-
html/langdon_2008_eurogp.html. Retrieved 2008-05-01.

Almasi, G.S. and A. Gottlieb (1989). Highly Parallel
Computing. Benjamin-Cummings publishers, Redwood
City, CA.

Asanovic, Krste et al. (December 18, 2006). "The Landscape
of Parallel Computing Research: A View from Berkeley"
(PDF). University of California, Berkeley.

NVIDIA CUDA Software Development Kit (CUDA SDK) -
Release Notes Version 3.0 for Window.

NVIDIA Clears Water Muddied by Larrabee Shane Mc
Glaun (Blog) - August 5, 2008 – Daily Tech.

Higgs PG (2000). "RNA secondary structure: physical and
computational aspects". Quarterly Reviews of Biophysics
33: 199–253.

RNA Folding with Nossinov-Jacobsen Algorithm, Hyung-
Joon Kim, CSE 417, University of Washington.

Gnort: High Performance Network Intrusion Detection
Using Graphics Processors" . Proceedings of the 11th
International Symposium on RAID.

“CUDA Zone”. www.nvidia.com/object/cuda_home.html.

www.wikipedia.com.

http://www.ics.forth.gr/dcs/Activities/papers/gnort.raid08.pd
f.

http://setiathome.berkeley.edu/cuda.php.

http://setiathome.berkeley.edu/cudafaq.php.


