
I.J.E.M.S., VOL.3 (4) 2012: 500-506 ISSN 2229-600X

500

ASSESSMENT OF SOFTWARE PROCESS MODELS
Akhilesh

Research Scholar, Department of Computer Science, Manav Bharti University, Solan (H.P.)

ABSTRACT
The field of software engineering is related to the development of software. Large software needs systematic development
unlike simple programs which can be developed in isolation and there may not be any systematic approach being followed.
In the last few decades, the computer industry has undergone revolutionary changes in hardware. This research deals with
a critical and important issue in computer world. It is concerned with the software management processes that examine the
area of software development through the development models, which are known as software development life cycle. It
represents five of the development models namely, waterfall, Iteration, V-shaped, spiral and Extreme programming. These
models have advantages and disadvantages as well. Therefore, the main objective of this research is to represent
different models of software development and make a comparison between them to show the features and defects of each
model.

KEY WORDS: Software Management Processes, software Development, Development Models, Software Development Life Cycle.

INTRODUCTION
Any application on computer runs through software. As
computer technologies have changed tremendously in the
last five decades, accordingly, the software development
has undergone significant changes in the last few decades
of 20th century. In the early years, the software size used
to be small and those were developed either by a single
programmer or by a small programming team. The
program development was dependent on the
programmer’s skills and no strategic software practices
were present. In the early 1980s, the size of software and
the application domain of software increased.
Consequently, its complexity has also increased. Bigger
teams were engaged in the development of Software. The
software development became more bit organized and
software development management practices came into
existence.
During the previous four decades, software has been
developed from a tool used for analyzing information or
solving a problem to a product in itself. However, the
early programming stages have created a number of
problems turning software an obstacle to software
development particularly those relying on computers.
Software consists of documents and programs that contain
a collection that has been established to be a part of
software engineering procedures. Moreover, the aim of
software engineering is to create a suitable work that
construct programs of high quality.

SOFTWARE PROCESS MODELS
A software process model is an abstract representation of
a process. It presents a description of a process from some
particular perspective as:
1. Specification.
2. Design.
3. Validation.
4. Evolution.

General Software Process Models are
1. Waterfall model: Separate and distinct phases of

specification and development.
2. Prototype model.
3. Rapid application development model (RAD).
4. Evolutionary development: Specification,

development and validation are interleaved.
5. Incremental model.
6. Iterative model.
7. Spiral model.
8. Component-based software engineering : The

system is assembled from existing components.
There are many variants of these models e.g. formal
development where a waterfall-like process is used,
but the specification is formal that is refined through
several stages to an implementable design[1].

FIVE MODELS
Software Engineering deals with the development of
software. Hence, understanding the basic characteristics of
software is essential. Software is different from other
engineering products in the following ways
1. Engineering products once developed cannot be

changed. To modifications the product, redesigning
and remanufacturing is required. In the case of
software, ultimately changes are to be done in code
for any changes to take effect.

2. The Other Engineering products are visible but the
software as such is not visible. That’s why, it is said
that software is developed, but not manufactured.
Though, like other products, it is first designed, then
produced, it cannot be manufactured automatically on
an assembly line like other engineering products.
Nowadays, CASE (Computer Aided Software
Engineering) tools are available for software
development. Still it depends on the programmer’s
skill and creativity. The creative skills of the
programmer is difficult to quantify and standardise.



Assessment of software process models

501

Hence, the same software developed by different
programmers may take varying amount of time,
resources and may have variable cost.

3. Software does not fail in the traditional sense. The
engineering products has wear and tear in the
operation. Software can be run any number of times
without wear and tear. The software is considered as
failed if:
a) It does not operate correctly.
b) Does not provide the required number of features.

4. Engineering products can be perfectly designed, but
in the case of software, however good the design, it
can never be 100% error free. Even the best quality
software is not completely error free. Software is
called good quality software if it performs the
required operation, even if it has a few errors.

5. The testing of normal engineering products and
software engineering products are on different
parameters. In the former, it can be full load testing,
etc., whereas in the case of software, testing means
identification of test cases in which software may fail.
Thus, testing of software means running of software
for different inputs. By testing, the presence of errors
is identified.

6. Unlike most of the other engineering products,
software can be reused. Once a piece of code is
written for some application, it can be reused.

7. The management of software development projects is
a highly demanding task, since it involves the
assessment of the developers creative skills. The
estimation regarding the time and cost of software
needs standardization of developers creativity, which
can be a variable quantity. It means that software
projects cannot be managed like engineering
products. The correction of a bug in the case of
software may take hours But, it may not be the case
with normal engineering products.

8. The Software is not vulnerable to external factors like
environmental effects. But the same external factors
may harm hardware. The hardware component may
be replaced with spare parts in the case of failure,
whereas the failure of a software component may
indicate the errors in design.

Thus, the characteristics of software are quite different
from other engineering products. Hence, the software
industry is quite different from other industries. There are
numbers of general models for software processes, like:
Waterfall model, Evolutionary development, Formal
systems development and Reuse- based development, etc.
This research will view the following five models :

1. Waterfall model.
2. Iteration model.
3. V-shaped model.
4. Spiral model.
5. Extreme model.

These models are chosen because their features
correspond to most software development programs.

THE WATERFALL MODEL
The waterfall model is the classical model of software
engineering. This model is one of the oldest models and is

widely used in government projects and in many major
companies. As this model emphasizes planning in early
stages, it ensures design flaws before they develop. In
addition, its intensive document and planning make it
work well for projects in which quality control is a
major concern.

The pure waterfall lifecycle consists of several non-
overlapping stages, as shown in the following figure. The
model begins with establishing system requirements and
software requirements and continues with architectural
design, detailed design, coding, testing, and maintenance.
The waterfall model serves as a baseline for many other
lifecycle models.

Fig. 2 Waterfall Model[4].

The following list details the steps for using the waterfall
model:
Phase I: Requirements
The first phase involves understanding what you need to
design and what is its function, purpose etc. Unless you
know what you want to design, you cannot proceed with
the project. Even a small code such as adding two integer
numbers, needs to be written with the output in mind.
Here, in this stage, the requirements which the software is
going to satisfy are listed and detailed. These requirements
are then presented to the team of programmers. If this
phase is completed successfully, it ensures a smooth
working of the remaining phases, as the programmer is not
burdened to make changes at later stages because of
changes in requirements
Phase II: Analysis
As per the requirements, the software and hardware
needed for the proper completion of the project is
analyzed in this phase. Right from deciding which
computer language should be used for designing the
software, to the database system that can be used for the
smooth functioning of the software, such features are
decided at this stage.
Phase III: Design
The algorithm or flowchart of the program or the software
code to be written in the next stage, is created now. It is a
very important stage, which relies on the previous two
stages for its proper implementation. The proper design at
this stage, ensures a execution in the next stage. If during
the design phase, it is noticed that there are some more
requirements for designing the code, the analysis phase is
revisited and the design phase is carried out according to
the new set of resources.



I.J.E.M.S., VOL.3 (4) 2012: 500-506 ISSN 2229-600X

502

Phase IV: Coding
Based on the algorithm or flowchart designed, the actual
coding of the software is carried out. This is the stage
where the idea and flowchart of the application is
physically created or materialized. A proper execution of
the previous stages ensures a smooth and easier
implementation of this stage.
Phase V: Testing
With the coding of the application complete, the testing of
the written code now comes into scene. Testing checks if
there are any flaws in the designed software and if the
software has been designed as per the listed specifications.
A proper execution of this stage ensures that the client
interested in the created software, will be satisfied with the
finished product. If there are any flaws, the software
development process must step back to the design phase.
In the design phase, changes are implemented and then the
succeeding stages of coding and testing are again carried
out.
Phase VI: Acceptance
This is the last stage of the software development in the
waterfall model. A proper execution of all the preceding
stages ensures an application as per the provided
requirements and most importantly, it ensures a satisfied
client. However, at this stage, you may need to provide the
client with some support regarding the software you have
developed. If the client demands further enhancements to
be made to the existing software, then the development
process must begin anew, right from the first phase, i.e.,
requirements.
The waterfall model continues to remain one of the most
commonly used methodologies. No doubt, new models
have been used, but the widespread use of this model is
the reason why it is studied in various software
management subjects. With the above diagram in hand,
you will not have much difficulty in understanding the
process of software development. This is not only one of
the simplest software process models for application
development, but it is also known for its ease of
implementation in the field of software development.
In some organizations, a change control board maintains
the quality of the product by reviewing each change made
in the maintenance stage. Consider applying the full
waterfall development cycle model when correcting
problems or implementing these enhancement requests.
In each stage, documents that explain the objectives and
describe the requirements for that phase are created. At the
end of each stage, a review to determine whether the
project can proceed to the next stage is held. Your
prototyping can also be incorporated into any stage
from the architectural design and after.
Many people believe that this model cannot be applied to
all situations. For example, with the pure waterfall model,
the requirements must be stated before beginning the
design, and the complete design must be stated before
starting coding. There is no overlap between stages.
In real-world development, however, one can discover
issues during the design or coding stages that point out
errors or gaps in the requirements.
The waterfall method does not prohibit returning to an
earlier phase, for example, returning from the design
phase to the requirements phase. However, this involves

costly rework. Each completed phase requires formal
review and extensive documentation development. Thus,
oversights made in the requirements phase are expensive
to correct later.

Because the actual development comes late in the
process, one does not see results for a long time. This
delay can be disconcerting to management and customers.
Many people also think that the amount of documentation
is excessive and inflexible.
Although the waterfall model has its weaknesses, it is
instructive because it emphasizes important stages of
project development. Even if one does not apply this
model, he must consider each of these stages and its
relationship to his own project [4].

Advantages
1. Easy to understand and implement.
2. Widely used and known (in theory!).
3. Reinforces good habits: define-before- design,

design-before-code.
4. Identifies deliverables and milestones.
5. Document driven, URD, SRD, … etc. Published

documentation standards, e.g. PSS-05.
6. Works well on mature products and weak teams.

Disadvantages :
1. Idealized, doesn’t match reality well.
2. Doesn’t reflect iterative nature of exploratory

development.
3. Unrealistic to expect accurate requirements so

early in project.
4. Software is delivered late in project, delays

discovery of serious errors.
5. Difficult to integrate risk management.
6. Difficult and expensive to make changes to

documents, ”swimming upstream”.
7. Significant administrative overhead, costly for

small teams and projects [6].

PURE WATERFALL
This is the classical system development model. It
consists of discontinuous phases:

1. Concept.
2. Requirements.
3. Architectural design.
4. Detailed design.
5. Coding and development.
6. Testing and implementation.

Table 1: Strengths & Weaknesses of Pure Waterfall
Strengths Weaknesses

 Minimizes planning
overhead since it can
be done up front.

 Structure minimizes
wasted effort, so it
works well for
technically weak or
inexperienced staff.

 Inflexible
 Only the final phase

produces a non-
documentation
deliverable.

 Backing up to address
mistakes is difficult.

The pure waterfall model performs well for products with
clearly understood requirements or when working with
well understood technical tools, architectures and
infrastructures. Its weaknesses frequently make it



Assessment of software process models

503

Strengths Weaknesses
 More flexible than the

pure waterfall model.
 If there is personnel

continuity between the
phases, documentation
can be substantially
reduced.
 Implementation of easy

areas does not need to
wait for the hard ones.

 Milestones are more
ambiguous than the pure
waterfall.
 Activities performed in

parallel are subject to
miscommunication and
mistaken assumptions.
 Unforeseen

interdependencies can
create problems.

inadvisable when rapid development is needed. In those
cases, modified models may be more effective.

MODIFIED WATERFALL
The modified waterfall uses the same phases as the pure
waterfall, but is not based on a discontinuous basis. This
enables the phases to overlap when needed. The pure
waterfall can also split into subprojects at an appropriate
phase (such as after the architectural design or detailed
design).

Risk reduction spirals can be added to the top of the
waterfall to reduce risks prior to the waterfall phases. The
waterfall can be further modified using options such as
prototyping, JADs or CRC sessions or other methods of
requirements gathering done in overlapping phases [5].

ITERATIVE DEVELOPMENT
The problems with the Waterfall Model created a demand
for a new method of developing systems which could
provide faster results, require less up-front
information, and offer greater flexibility. With Iterative
Development, the project is divided into small parts.
This allows the development team to demonstrate results
earlier on in the process and obtain valuable feedback
from system users. Often, each iteration is actually a mini-
Waterfall process with the feedback from one phase
providing vital information for the design of the next
phase. In a variation of this model, the software products,
which are produced at the end of each step (or series of
steps), can go into production immediately as incremental
releases.

Table 2: Strengths & Weaknesses of Modified Waterfall

Fig. 4 Iterative Development.

V-SHAPED MODEL
Just like the waterfall model, the V-Shaped life cycle is a
sequential path of execution of processes. Each phase
must be completed before the next phase begins. Testing
is emphasized in this model more than the waterfall
model. The testing procedures are developed early in the
life cycle before any coding is done, during each of the
phases preceding implementation. Requirements begin the
life cycle model just like the waterfall model. Before
development is started, a system test plan is created. The
test plan focuses on meeting the functionality specified in
requirements gathering.

The high-level design phase focuses on system
architecture and design. An integration test plan is created

in this phase in order to test the pieces of the software
systems ability to work together. However, the low-level
design phase lies where the actual software
components are designed, and unit tests are created in
this phase as well.
The implementation phase is, again, where all coding
takes place. Once coding is complete, the path of
execution continues up the right side of the V where
the test plans developed earlier are now put to use.

Advantages
1. Simple and easy to use.
2. Each phase has specific deliverables.



I.J.E.M.S., VOL.3 (4) 2012: 500-506 ISSN 2229-600X

504

3. Higher chance of success over the waterfall model
due to the early development of test plans during the
life cycle.

4. Works well for small projects where requirements are
easily understood.

Disadvantages
1. Very rigid like the waterfall model.

2. Little flexibility and adjusting scope is difficult and
expensive.
3. Software is developed during the implementation
phase, so no early prototypes of the software are
produced.
4. This Model does not provide a clear path for
problems found during testing phases [7].

Fig. 6 V-Shaped Life Cycle Model[7].

SPIRAL MODEL
The spiral model is similar to the incremental model, with
more emphases placed on risk analysis. The spiral model
has four phases: Planning, Risk Analysis, Engineering and
Evaluation. A software project repeatedly passes through
these phases in iterations (called Spirals in this model).
The baseline spiral, starting in the planning phase,
requirements are gathered and risk is assessed. Each
subsequent spiral builds on the baseline spiral.
Requirements are gathered during the planning phase. In
the risk analysis phase, a process is undertaken to
identify risk and alternate solutions. A prototype is
produced at the end of the risk analysis phase. Software is
produced in the engineering phase, along with testing
at the end of the phase. The evaluation phase allows the
customer to evaluate the output of the project to date
before the project continues to the next spiral.

In the spiral model, the angular component represents
progress, and the radius of the spiral represents cost.

Advantages
1. High amount of risk analysis.
2. Good for large and mission-critical projects.
3. Software is produced early in the software life cycle.

Disadvantages
1. Can be a costly model to use.
2. Risk analysis requires highly specific expertise.
3. Project’s success is highly dependent on the risk

analysis phase.
4. Doesn’t work well for smaller projects [7].

Spiral model sectors
1. Objective setting :Specific objectives for the phase

are identified.
2. Risk assessment and reduction: Risks are assessed

and activities are put in place to reduce the key risks.
3. Development and validation: A development

model for the system is chosen which can be any of
the general models.

4. Planning: The project is reviewed and the next
phase of the spiral is planned [1].



Assessment of software process models

505

Fig. 7 Spiral Model of the Software Process[1].

WIN WIN SPIRAL MODEL
The original spiral model began each cycle of the spiral
by performing the next level of elaboration of the
prospective system's objectives, constraints and
alternatives. A primary difficulty in applying the spiral
model has been the lack of explicit process guidance in
determining these objectives, constraints, and alternatives.
The Win-Win Spiral Model uses the theory W (win-
win) approach to converge on a system's next-level
objectives, constraints, and alternatives. This Theory W
approach involves identifying the system's stakeholders
and their win conditions, and using negotiation processes
to determine a mutually satisfactory set of objectives,
constraints, and alternatives for the stakeholders. In
particular, as illustrated in the figure, the nine-step Theory
W process translates into the following spiral model
extensions:
1. Determine Objectives: Identify the system life-cycle

stakeholders and their win conditions and establish
initial system boundaries and external interfaces.

2. Determine Constraints: Determine the conditions
under which the system would produce win-lose or
lose- lose outcomes for some stakeholders.

3. Identify and Evaluate Alternatives: Solicit
suggestions from stakeholders, evaluate them with
respect to stakeholders' win conditions, synthesize
and negotiate candidate win-win alternatives, analyze,
assess, resolve win-lose or lose-lose risks, record
commitments and areas to be left flexible in the

project's design record and life cycle plans.
4. Cycle through the Spiral: Elaborate the win

conditions evaluate and screen alternatives, resolve
risks, accumulate appropriate commitments, and
develop and execute downstream plans [8].

EXTREME PROGRAMMING
An approach to development, based on the development
and delivery of very small increments of functionality. It
relies on constant code improvement, user involvement in
the development team and pair wise programming . It can
be difficult to keep the interest of customers who are
involved in the process. Team members may be
unsuited to the intense involvement that characterizes
agile methods. Prioritizing changes can be difficult where
there are multiple stakeholders. Maintaining simplicity
requires extra work. Contracts may be a problem as with
other approaches to iterative development.

Fig. 8 The XP Release Cycle



I.J.E.M.S., VOL.3 (4) 2012: 500-506 ISSN 2229-600X

506

EXTREME PROGRAMMING PRACTICES
Incremental planning: Requirements are recorded on
Story Cards and the Stories to be included in a release are
determined by the time available and their relative
priority. The developers break these stories into
development "Tasks".
Small Releases: The minimal useful set of functionality
that provides business value is developed first. Releases of
the system are frequent and incrementally add
functionality to the first release.
Simple Design: Enough design is carried out to meet
the current requirements and no more.
Test first development: An automated unit test
framework is used to write tests for a new piece of
functionality before functionality itself is implemented.
Refactoring: All developers are expected to re-factor
the code continuously as soon as possible code
improvements are found. This keeps the code simple and
maintainable.
Pair Programming: Developers work in pairs,

checking each other’s work and providing support to do a
good job.
Collective Ownership: The pairs of developers work
on all areas of the system, so that no islands of
expertise develop and all the developers own all the
code. Anyone can change anything.
Continuous Integration: As soon as work on a task
is complete, it is integrated into the whole system. After
any such integration, all the unit tests in the system
must pass.
Sustainable pace: Large amounts of over-time are not

considered acceptable as the net effect is often to
reduce code quality and medium term productivity.
On-site Customer: A representative of the end-user of
the system (the Customer) should be available full time
for the use of the XP team. In an extreme programming
process, the customer is a member of the development
team and is responsible for bringing system requirements
to the team for implementation.

XP and agile principles
1. Incremental development is supported through

small, frequent system releases.
2. Customer involvement means full-time customer

engagement with the team.
3. People not process through pair programming,

collective ownership and a process that avoids long
working hours.

4. Change supported through regular system releases.
5. Maintaining simplicity through constant refactoring

of code [1].
Advantages
1. Lightweight methods suit small-medium size projects.
2. Produces good team cohesion.
3. Emphasises final product.
4. Iterative.
5. Test based approach to requirements and quality

assurance.

Disadvantages
1. Difficult to scale up to large projects where

documentation is essential.

2. Needs experience and skill if not to degenerate into
code-and-fix.

3. Programming pairs is costly.
4. Test case construction is a difficult and specialized

skill [6].

CONCLUSION AND FUTURE WORK
After completing this research , it is concluded that :
1. There are many existing models for developing

systems for different sizes of projects and
requirements.

2. These models were established between 1970 and
1999.

3. Waterfall model and spiral model are used commonly
in developing systems.

4. Each model has advantages and disadvantages for the
development of systems , so each model tries to
eliminate the disadvantages of the previous model

Finally, some topics can be suggested for future works:

1. Suggesting a model to simulate advantages that are
found in different models to software process
management.

2. Making a comparison between the suggested model
and the previous software processes management
models.

3. Applying the suggested model to many projects to
ensure of its suitability and documentation to explain
its mechanical work.

REFERENCES
[1] Ian Sommerville, "Software Engineering", Addison

Wesley, 7th edition, 2004.

[2] CTG. MFA – 003, "A Survey of System
Development Process Models", Models for Action
Project: Developing Practical Approaches to
Electronic Records Management and Preservation,
Center for Technology in Government University at
Albany / Suny,1998 .

[3] Steve Easterbrook, "Software Lifecycles",
University of Toronto Department of Computer
Science, 2001.

[4] National Instruments Corporation, "Lifecycle
Models", 2006, http://zone.ni.com.

[5] JJ Kuhl, "Project Lifecycle Models: How They
Differ and When to Use Them",2002
esolutions.com.

[6] Karlm, "Software Lifecycle Models', KTH,2006 .

[7] Rlewallen, "Software Development Life Cycle
Models", 2005 ,http://codebeter.com.

[8] Barry Boehm, "Spiral Development: Experience,
Principles, and Refinements", edited by Wilfred J.
Hansen, 2000.


