
I.J.E.M.S., VOL.8 (2) 2017: 130 -133 ISSN 2229-600X

130

PACKAGE ORIENTED REQUIREMENTS ANALYSIS FOR BEST
PERFORMANCE AND QUALITY SYSTEMS

1AB. Qayoom Sofi and 2Ovass Shafi Zargar
1Department of Computer Applications, Govt Degree College, Pattan, Baramulla, J&K 193121, India

2 Department of Computer Applications, Amar Singh College, Srinagar, J&K, India

ABSTRACT
Electronic systems/devices must provide best performance and quality as continuously demanded. It needs developing
systems based on the principle of “Oneness” i.e., each component performs just one specialized quality function. The
globally unresolved problem is the software crisis problem owing to the low productivity and poor quality of the products.
One of the main reasons is the highly complex requirements analysis that forms the foundation and largely affects the
quality and productivity. To overcome software crisis, it is necessary to improve processes as well as products. This paper
focuses on bringing improvement through following factors.
Process Effectiveness: The paper proposes to introduce Package Oriented Software Analysis (Modelling). It evaluates
types of requirements and their impact on software quality and productivity and organizes the requirements information
into easily manageable reusable quality information components/ packages to effectively evaluate
completeness/consistency resulting in high quality Software Requirements Specification document. Significant benefits
will be achieved by reduced defects, reduced rework/increased reuse. It improves the productivity by reducing the cost and
time of software development/maintenance by increasing the reusability and interoperability of the products/packages.
Product Quality: To achieve significant contributions to improving product quality further, this paper reviews quality
assessment models to extend/update existing quality model resulting in a better comprehensive/extensive model, whereby
total quality (T.Q) of a product is defined as T.Q= P+Q; where P means performance requirements and Q means Qualities
requirements.
Technology Transfer: The results can be applied using existing Object Oriented technology which already supports
Packages and Reusability that further enhances software quality and productivity gains.

KEYWORDS: Quality, Productivity, Performance, Requirements Analysis, Requirement, Defect, Packaging, Reuse

INTRODUCTION
With a growing demand of users for high quality software,
the need for the conduct of research to improve the
software quality and productivity is increased. The
research paper aims to achieve following goals.

1. To improve the Software Quality.
2. To improve the Software Productivity.

In spite of the number of studies conducted, productivity is
still an issue for software industry since all factors and
their relationships have not been known. Productivity is
defined as a ratio of Outputs/Input. It is expressed as ratio
of size over effort.

Productivity = Size/Effort.

It is affected by a no of factors which have been broadly
classified as

1. Software development environment attributes.
2. Software system product attributes.
3. Project staff attributes.

However, low software productivity is still a globally
significant unresolved problem. Software’s do fail and the
cost of failure is also huge. Software failure occurs due to
following three main reasons

1. Software is late. (Time/Schedule Problem)
The main reason for the late delivery of software is
either wrong/poor understanding of the problem or the
wrong/poor use of the software engineering and
project management.

2. Software is expensive. (Cost Problem)
The main reason for the high cost of software is that
software development/maintenance is still labor-
intensive.

3. Software is unreliable. (Quality Problem)
mainly arises due to the introduction of errors/bugs
during the development process.

Software productivity and quality are interrelated. In fact,
software productivity depends on the software quality.
According to the IEEE Standard Glossary of Software
Engineering Terminology [2,3,28], the quality of software
products is defined as

1. the degree to which a system, component or process
meets specified requirements and

2. the degree to which a system, component or process
meets the needs or expectations of a user.

Infrastructure delivery model and validation

131

Requirements are capabilities and conditions to which the
system/project/software product must conform.
Requirements are critical for defining, estimating and
managing any project. Quality requirements are essential
to the success of any software development
project/product. There are two types of requirements
1. Functional Requirements: which specify what

behaviour a system does.
2. Non-Functional Requirements: which specify how

well it does.

Requirements Analysis is the first phase of software
development process that focuses on understanding the
problems of the system and the needs of the client and
users of the system. The requirements are developed in
this stage by a (development) process which consists of a
sequence of activities as follows.

1. Requirements Elicitation.
2. Requirements Specification.
3. Requirements Verification & Validation.

The goal of Requirements Analysis is to transform the
ideas in the minds of client & users (informal input) into a
formal document of clients requirements called Software
Requirements Specification (SRS). Evidently, the cost,
schedule and quality of the software (project) depends on
the quality of the Software Requirements Specification
(SRS). So, a high quality Software Requirements
Specification (SRS) is a pre-requisite to a high quality
software, which requires that the Software Requirements
Specification (SRS) be complete, correct, consistent and
unambiguous.

However, producing a high quality (reasonable
quality) Software Requirements Specification (SRS)
requires that the analysis process be such that either
errors/defects may not be introduced or fewer defect/errors
be introduced at the requirements phase itself. That is, a
high quality SRS can be produced by avoiding errors as
much as possible or by reducing errors in it, by removing
them as far as possible (before the design starts).

However, requirements analysis is still one of the
weak areas of software engineering; hence research is
required for evaluation and improvement of the
requirements analysis phase.

Requirements analysis is a complex process due to
involvement of three diverse parties (Client, users and
developers) between which a communication gap exists
that makes the task of requirements specification difficult
and challenging. The problem is complicated by the fact
that often the needs and requirements of the system are not
often known and understood by the client and the users of
the system.

Further, the analysis is difficult because it produces a
lot of information (about requirements) usually conflicting
and the problem is how that information is organized so
that it can be effectively evaluated for completeness and
consistency. The difficulty occurs when it is not clear
“what information is missing”. A good structuring of
information (requirements) can help determine the areas
of incompleteness. So, proper structuring of information
(requirements) is required because once what needs to be
determined is known, determining it is usually not hard.

Like any other phase, occurrence of defects during
analysis is also inevitable owing to its complexity. It is the
presence of these defects that leads to the degradation of
quality which in turn may lead to the failure of software.

Further, the greater the delay in detecting errors after
it occurs, the more expensive it is to correct it. That is, a
requirements error (an error that occurs during
requirement phase) if corrected after the system has been
developed can cost up to 100 times more than
correcting/removing it during the requirements phase itself
since the cost of fixing an error increases almost
exponentially as the time progresses thereby increasing
cost & time of software development which reduces
software productivity.

RESEARCH DESIGN
The research proposal is to improve process effectiveness
by improving the requirements analysis phase of the
Software Engineering process through the introduction of
Package Oriented Software Analysis (Modelling).

It proposes to remove communication problems by
modeling real world systems into packages such that the
programming language supports their implementation and
easy reuse at a higher level (system/sub-system level).
Further, it reviews quality assessment models for
extension of existing model or introduction of a better
comprehensive/extensive quality model, whereby total
quality of a product will be defined as T.Q= P+Q; Where
P means performance requirements and Q means Qualities
requirements.

PACKAGE ORIENTED SOFTWARE ANALYSIS
Traditional Analysis focuses on Functionality, Object
oriented Analysis starts with object modelling, while as
most of the real world that we want to model consists of
interacting systems and subsystems. There is an increasing
need to assemble powerful systems and subsystems.
Packaging just do that i.e it models a real world system
into components called Packages.

Where a Package is an easily manageable reusable
quality information component. Logically, a package is a
group while as physically/technically, a package is a folder
at the least level. There are two types of Packages:
1. Functional:

General and Special /Custom Package.
2. Non-Functional:

Performance and Qualities Package.

. Package Oriented Requirements Analysis

Macro Analysis
(Packaging)

Micro Analysis
(OMT)

Identify sub-systems,
departments, sections

Identify objects, relationships
of the sub-systems

Advantages of Packaging and Reusing of Packages
As shown above, analysis has been divided into two
phases namely Macro- Analysis and Micro-Analysis.
Macro-Analysis is actually a new sub-phase introduced to
organize information requirements at the analysis level

I.J.E.M.S., VOL.8 (2) 2017: 130 -133 ISSN 2229-600X

132

itself rather than during the design phase in order to avoid
errors as early as possible. In this sub-phase of analysis,
packaging (identification and classification of
components) will be actually done and detailed analysis
later identifies objects and their relationships in these sub-
systems identified during the macro-analysis.
The high cost of developing software means that we must
make reuse of existing software effective in order to
improve productivity and quality. Environments must be
developed that make all forms of reuse easy to practice.
Further, software is difficult and costly to maintain and yet
there is a high demand to modify and/or enhance it

because organisations must keep adapting to changing
environments. Object-oriented techniques only partly
solve the problem, as it only deals with low level reuse.
Much greater progress will occur if we reuse whole
systems and subsystems rather than just objects. This can
be achieved by having systems/sub-systems as packages
which can be reused later. It means we also need
languages that support not only programming but also
analysis (modeling), design (modeling), implementation
and reuse at a much higher level (i.e. at the
system/subsystem level).

Architecture of the Model

MAIN COMPONENTS/PACKAGES
1. FUNCTIONAL PACKAGES

organize all functional requirements/needs of the
system.

2. NON- FUNCTIONAL PACKAGES
Qualities Packages Organize quality attributes as
seen by a user.
Performance Packages:- organize other quality
attributes/characteristics of the system including
performance from low level system’s perspective.

Features of Package Oriented Software Analysis
1. Simplification of Requirements Analysis.
2. Introduction and use of “Packages” to organize

requirements and to overcome missing areas.
3. Use of existing technologies and languages for

modeling and implementation.
4. Effective Elicitation (Modeling) of requirements.
5. Effective specification of requirements.
6. Producing structured/packaged RS document.
7. Prevention of defects.
8. Prioritization of Packages.
9. (Easy) reuse of Packages.
10. Simple, easy to implement, quick integration.

SOFTWARE QUALITY MODEL
A number of software quality models have been proposed
by the researchers/scholars for assessment of software
quality. A quality model is "the set of characteristics, and
the relationships between them that provides the basis for
specifying quality requirements and evaluation". The
models constructed define the fundamental factors
(characteristics), and within each of them the sub factors
(or sub-characteristics). Each sub-factor has been assigned
a metric for the real evaluation of overall quality.

Important Quality Models
1. McCall’s Software Quality Model / Classical

Quality Model [McCall et al. in 1977]

2. Boehm’s Software Quality Model [1978] Boehm et
al. proposed using McCall’s quality model.

3. McCall’s quality model was later adapted and
revised as the MQ Model by Watts in 1987.

4. ISO/IEC 9126 Quality Model [1991, ISO/IEC.]
First Standard Model.

5. FURPS Quality Model [1992]. FURPS+

6. Dromey’s Software Quality Model [1995] R.G.
Dromey.

7. SQuaRE Model: The ISO 9126 Model was updated
in 2007 by the ISO 25010 that redefines the
fundamental characteristics.

Limitation of Existing Models:-
1. All the models have ignored the aspect of

communication as one of the quality factors although
there is a need for quality components for
communications at all levels especially because of
Internet.

2. Reusability has not been considered as main
characteristic except in McCall’s Model, although
easy and effective reuse is the need of the modern
technology.

USER
USER LEVEL/HIGH

LEVEL
QUALITY

NON-FUNCTIONAL
REQUIREMENTS

SOFTWARE
PRODUCT

SYSTEM
LEVEL/LOW LEVEL

PERFORMANCE

FUNCTIONAL PACKAGES
FUNCTIONAL

REQUIREMENTS

HARDWARE

Infrastructure delivery model and validation

133

THE PERFORMANCE QUALITY MODEL
With rapid change in technology and to cover past, present
as well as future technology, Quality needs to be
redefined/reviewed/extended. So, with ISO 25010 Quality
Model as a base/reference, integrating some new

characteristics/factors and sub-characteristics/sub-factors
is proposed to have a comprehensive quality model called
Package-Oriented Software Quality (POSQ) Model/PQ
Model, with two main quality groups as Performance and
Qualities as shown below.

INTERPRETATIONS AND APPLICATION OF
PROPOSED MODEL
Measurement for Improvement
To improve products and processes, it is necessary to
make meaningful measurements. Once we have the
measurements, we can use them to improve the quality of
the software. To achieve useful impact, the measurements
must be linked to a software product quality model in a
systematic way.
The most desirable situation for applying measurement is
to define an ideal for some property and then make
measurements of a product to see if the ideal is realized. If
the ideal is not realized then their is a basis and guidance
for improvement. The present proposal will try to measure
things with respect to an ideal which is constructive to
quality improvement. Accordingly, the (software)
products can then be classified as having

1. Best quality.
2. Average quality.
3. Poor quality.

CONCLUSION
The major thrust of this paper is to propose package
oriented requirements analysis model for effective
specification and organization of complete information
about requirements into functional packages which can be
reused.
Further, the focus is to ensure the quality of these
packages through the proposal of Performance Qualities
model whereby the quality attributes have been refined
into Performance and Qualities groups implemented as
non-functional packages. The models are supported by the
various existing software engineering tools like Holmes,
Egidio, UML, Interstage Apworks.

REFERENCES
Bill Davey, RMIT University, Melbourne, Australia and
Kevin R. Parker, Idaho State University, Pocatello, Idaho,
USA Requirements Elicitation Problems: A Literature
Analysis

R.G. Dromey, Software Quality Institute, Griffith
University, Nathan, QLD., 4111, AUSTRALIA: Software
Quality and Productivity Improvement

Donald Firesmith, Software Engineering Institute, U.S.A.
Using Quality Models to Engineer Quality Requirements,

David Mauricio, Glen Rodríguez and José P. Miguel, A
REVIEW OF SOFTWARE QUALITY MODELS FOR
THE EVALUATION OF SOFTWARE PRODUCTS,

Pankaj Kumar, Noida Institute of Engineering &
Technology, Greater Noida: ASPECT-ORIENTED
SOFTWARE QUALITY MODEL: THE AOSQ MODEL

Kazuhiro Esaki, Faculty of Science and Engineering,
Hosei University, Tokyo, Japan:Verification of Quality
Requirement Method Based on the SQuaRE System
Quality Model

Walt Scacchi, Understanding and Improving Software
Productivity.

Melanie Ruhe and Stefan Wagner, A Systematic Review
of Productivity Factors in Software Development.

Anupriya and Saya. Survey on Various Productivity
Measures of Software Development Teams, June 2014,

Abimbola Soriyan1, Ishaya Gambo1 and Philip Achimugu2

Software Architecture Performance Quality Model:
Qualitative Approach

Non-Functional Requirements

LOW LEVEL/SYSTEM LEVEL/
INTERNAL

HIGH LEVEL/USER LEVEL/
EXTERNAL

Portability Quality
Efficiency Usability
Reliability Acceptance /Affordability

Functionality Legality/Licensing/Language
Operability Interoperability
Reusability Testability

Maintainability Integrity
Adaptability Expandability

Networkability Security

Compatibility Supportability

Evolvability

