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ABSTRACT
In this paper a mathematical model prey-predator and scavenger with linear harvesting in predator and scavenger. The
existence, uniqueness, limitations (roundedness) of solution and the stability analysis of every possible accumulation points
are studied. The Lyapunov function is used to study the global dynamics of the model. The effect of the scavenger and
harvest on system dynamics is discussed using numerical simulation.
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1. INTRODUCTION
In recent years, it has been important to study dynamics of
impulsive disorders on population models. In particular,
the models of impulsive assemblies of prey and predator
were verified by many researchers, Then these studies
began to expand more and more , Anderson and May [1,2]
were the first to combine ecology and epidemiology with
Lotka-Volterra prey and predator model with infection
disease extend among prey by contact between them and
no reproduction in infected prey, where the dynamics of
the epidemiological ecosystem and harvesting systems
were studied, and the latter is considered one of the most
important factors that help stop diseases and transmission
of infection Where most interactions have been described
with response functions known as functions Holing  and
are of several types[3,4,5]:

1- = linear type
2- = Holing –II

3- = Holling –III

Many researchers have studied the dynamics of prey and
predator systems using the Holling response functions,
including the first type and the second type R.K. Naji [6],
and the third type pan-ping Liu [7].
Later, the prey -predator model was studied in the
presence of a scavenger, since it is known that
scavengers are animals that eat dead (cadaver) organisms
that have died or have been killed by other predatory
organisms While raking generally survey of  raptors
to carnivores that feed on carrion, it is also
a herbivorous feeding behavior scavengers play an
important role in the ecosystem by consuming dead animal
and plant material. Analyzers and catalysts complete this
process, by consuming residue sweepers points
Decomposers and detritivores complete this process, by
consuming the remains scavengers points. There is an
influence on the dynamics of the prey and predator

system, a small number of researchers have studied the
effect of scavenger presence in their models. Nolting et al.
[8] proposed and analyzed a three species system
consisting of a predator, its prey and a scavenger and
studied R.K.Naji and H.A.Satar prey-predator and
scavenger model [9]
Further studied O.A.Ali and A.A.Majeed The dynamics of
prey-predator model with harvesting involving diseases in
both populations[10] , and the More of researcher are
studied prey-predator model with nonlinear harvesting
O.M.Ali studied the SIR model with non-linear harvesting
and vaccination[11] and R.K.Naji and H.A.Satar studied
prey-predator model with non-linear harvesting [12].
In accordance with the above, in this paper, however, we

proposed and analyzed a food web model consisting of
three species prey–predator–scavenger with two types of
functional response to predation and a linear harvesting
function in predator and scavenger. Our aim is to study
the effect of harvesting and maximum attack rate of
scavenger on the dynamics of the system.

2.1    Mathematical model
In this part an ecological system consisting of prey–
predator–scavenger if formulated mathematically for
study. It’s assumed that there is a linear harvesting on
predator and scavenger. So in order to formulate the
dynamics of such a real life system the following
hypotheses are adopted:

1- Let X(T ), Y (T) and Z(T ) represent the densities at
time t for the prey, predator and scavenger,
respectively. It’s assumed that prey species grow
logistically with intrinsic growth rate r > 0 and
carrying capacity K > 0.

2- predator consumes prey according to Lotka-Volterra of
functional response with maximum attack rate > 0,
while the scavenger consume prey according to
Holing- III types  of functional response with
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maximum attack rate > 0 , and  half saturation rate> 0 .

3- The predator, in the absence of prey, it decomposes
exponentially with death rate > 0, however the
existence of the prey contributes to predator’s growth
with conversion rate > 0.

4- The scavenger, in the absence of its prey and all other
resources of food, it significantly degrades with a
natural mortality rate > 0, however the existence of
their prey contributes to scavenger’s growth with
conversion rate > 0. In addition it’s assumed that the
population of scavenger benefits from naturally died
predator and with benefit rate > 0

5- Finally, predator and scavenger assemblies are
assumed to be harvested by external forces according
to linear type of harvesting function with constant rates

>0 and >0 for the predator and scavenger
respectively

According to the above hypotheses the dynamics of the
above food web system can be described mathematically
with the following set of first order ordinary differential
equations: = 1 − − − +

= −− (2.1)= + + − −
Note that the model proposed above contains (11)
parameters that make the mathematical analysis of the
system difficult. So in order to reduce the number of
parameters and determine which parameter represents the
control parameter, the following dimensionless variables
are used: = , = , = , = .
Then system (2.1) can be written in the following
dimensionless form:

= 1 − − − + = ( , , )= ( − − ) = ( , , ) (2.2)= + + − − = ( , , )
Where= , = , = , = , = ,= , = , =
With (0) ≥0 , (0) ≥ 0 and (0) ≥ 0 .

represent the dimensionless parameter of system (2.2). It is
observed that the   number of   parameters have   been
reduced   from eleven in the system (2.1) to eight in the
system (2.2).

It is easy to check that all the interaction functions f1,
f2and  f3 on the right side of system (2.2) are continuous
and have continuous partial derivatives on with respect
to dependent variables , and . Accordingly they are
Lipschitzian functions and hence system (2.2) has a unique
solution for each non-negative initial condition.
Furthermore the boundedness of the system is shown in
the following theorem.

Theorem (2.1): All the solutions of system ( 2.2 ) which
initiate in R are uniformly bounded.

Proof.
Assume that ( ( ), ( ), ( )) be any solution of the
system (2.2) with non-negative initial
condition ( (0), (0), (0)). According to the first
equation of system (2.2) we have:≤ (1 − )
Clearly according to the theory of differential inequality,
we get:lim→ sup ( ) ≤ 1 . Define the function( ) = ( ) + ( ) + ( ).
Therefore,

< (1 − ) − ( + ) − ( + − )≤ 2 − where n= min { + , + − sup( ) } .( ) ≤ 2 + (0) − 2 .
Thus 0 ≤ ( ) ≤ as → ∞. Hence all the solutions of

system (2.2) are uniformly bounded and the proof is
complete

2.2 Existence of accumulation points
In this section, the existence of every possible
accumulation points of the system (2.2) is discussed.  it is
observed that , system (2.2) has at most seven
accumulation points.
1) The vanishing accumulation point = (0 ,0 ,0 )

always exists.
2) The axial accumulation point = (1 ,0 ,0 ) always

exists.
3) The scavenger-free accumulation point =( ̅ , ,0 ) exists iff there is a positive solution to the

following set of equations:1 − − = 0 (2.2 )− − = 0 (2.2 )
From the equation (2.2 ) we have,
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̅ = (2.2 )
Now, by substituting equation (2.2c) in equation(2.2 ) we get:= 1 − + (2.2 )
Note that the equation (2.2 ) is a positive, provided that:> +(2.2 )

4) The predator-free accumulation point = ( ̇ , 0, ̇)
exists iff there is a positive solution to the following
set of equations:1 − − + = 0 (2.3 )

+ − − = 0 → ( − ( + )) − = 0 (2.3 )
From equation (2.3 ) we

h ̇ = ( )( ( )) (2.3 )
Note that the equation (2.3 ) is a positive root, provided
that:> + (2.3 )
Now, by substituting equation (2.3c) in equation (2.3 )
we get:

̇ = (1 − ̇ )( + ̇ )̇ (2.3 )
Note that the equation (2.3 ) is a positive, provided that:> + + ( + ) (2.3 )
5) The positive accumulation point = ( ̿, , ̿) exists
and unique in the Int. of xyz- space iff there is a
positive solution to the following set of equations:1 − − − + = 0 (2.4 )
− − = 0 (2.4 )
+ + − − = 0 (2.4 )

From equation (2.4b) we have,

̿ = + , (2.4 )

Now, by substituting the equations (2.4d) in the equation(2.4c) we get:

= ( + ) + ( + − ) + , (2.4 )
Note that the equation (2.4 ) is a positive root, provided
that: + > α (2.4 )
Now, by substituting equations (2.4e) and (2.4d) in
equation (2.4a) we get:

̿ = 1 − − ( ) ( ) ∗ ,(2.4 )
Note that the equation (2.4 ) is a positive root, provided
that:1 > ̿ + (2.4h)

Consequently, the positive accumulation point= ( ̿ , , ̿ ) of system (2.2) exists uniquely in the. of xyz −space .

2.3   Local Stability Analysis.
In this part, we analyzed the local stability of the model
(2.2) around all accumulation point and discussed through
computing the Jacobian matrix ( , , ) and
determined the eigenvalues of system (2.2)  at each of
them the Jacobian matrix ( , , ) of the system (2.2) at
all of them can be written:

=
⎝⎜
⎜⎜⎛

⎠⎟
⎟⎟⎞ = ⎝⎜⎜

⎛1 − 2 − − ( 2( + ) ) − − +− − 02( + ) + + − − ⎠⎟⎟
⎞ . (2.7)

 Stability of  the accumulation point = ( , , )
The Jacobian matrix of system (2.2) at can be
written as,

= ( ) = 1 0 00 − − 00 0 − − (2.8)
Then the distinctive equation of ( ) is given by:(1 − ) ( − − − ) – − − = 0,
So, the eigenvalues of are= 1 , = − − , = − −
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Thus, the accumulation point is saddle point

 Stability of  the accumulation point = ( , , )
The  Jacobian matrix of system (2.2) at can be
written as,= ( )
= ⎣⎢⎢
⎢⎡−1 −1 − 1+ 1− − 00 0 1 + − − ⎦⎥⎥

⎥⎤ ( 2.9 )
Then the distinctive equation of ( ) is given by:[ + + B ] − − − = 0,
where:= ( + + 1 − ) > 0= + > 0
So, either− − − = 0, (2.9 )

which gives two eigenvalues of ( ) by:

= − − , which is negative if the following

conditions hold.< + (2.9c)

Or+ + = 0
which gives that other two eigenvalues of with
negative real parts which are ( by using Routh
Hurwitz criteria)

= 12 − + − 4 ,
= 12 − − − 4 .

So, accumulation point is locally asymptotically stable
in the . . However, it is unstable otherwise.

 Stability of  the accumulation point = ( , , )
The Jacobian matrix of system (2.2) at can be written
as,

= ( ) = ⎣⎢⎢
⎢⎢⎡− + − + − ( + )+ ( + )+ 0 00 0 ( + )+ ( + ) + (1 − + ) − − ⎦⎥⎥

⎥⎥⎤ (2.10)
Then the distinctive equation of ( ) is given by+ + ( ) ( )( ) + (1 − ) − − − = 0,
So, either

( )( ) + (1 − ) − − − = 0,(2.10 )
which gives eigenvalues of ( ) by:= ( )( ) + (1 − ) − − ,

which is negative if  the following conditions hold.

+ > ( + )+ ( + ) + 1 − + (2.10 )
Or

+ + + ( + ) = 0
which gives that other two eigenvalues of with negative
real parts which are ( by using Routh Hurwitz criteria)

= 12⎝⎛− + + + − 4 ( + ) ⎠⎞,
= 12⎝⎛− + − + − 4 ( + ) ⎠⎞.

So, accumulation point is locally asymptotically stable
in the . . However, it is unstable otherwise.

 Stability of  the accumulation point = ( ̇ , , ̇ )
The Jacobian matrix of system (2.2) at can be written
as,= ( ) = × , (2.11)
where
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= 1 − 2 ̇ − −2 ̇ ̇( + ̇ ) , = − ̇ , = − +̇ ̇ ,= ̇ , = ̇ − − , = 0,
= 2 ̇ ̇+ ̇ , = ̇ , = 0,

Then the distinctive equation of ( ) is given by:[ + + + V ] = 0, (2.11 )
where:

= −( + )= − −= −
Using Routh Hurwitz criterion implies equation (2.11 ) has
roots (eigenvalues)with negative real parts  if and only if> 0, > 0 and − > 0.= −( + ) > 0= − −= − > 0 , provided thaṫ < + , (2.11 )
Further, it is easy to check that:

− = ( + )(− + + ) − += ( + )(− + ) + + > 0
provided that( + )(− + ) + >
The accumulation point is locally asymptotically stable
in the . . However, it is unstable otherwise.

 Stability of the accumulation point = ( , , )
The Jacobian matrix of system (2.2) at can be written
as,= ( ) = × , (2.12)
Where= (1 − 2 ̿ − − 2 ̿ ̿+ ), = − ̿,

= − + ,= ̿, = 0, = 0 , = 2 ̿ ̿+ ,= ̿ , = 0 ,
Then the distinctive equation of ( ) is given by:[ + U + + ] = 0,(2.12 )
where= −= −( + )= −( )
Using Routh Hurwitz criterion implies equation (2.12 ) has
roots (eigenvalues)with negative real parts  if and only if> 0, > 0 and − > 0.
Now > 0 , provided that

2 ̿ + + 2 ̿ ̿+ > 1 (2.12 )
Also, we obtain that > 0
Further, it is easy to check that:− = ( + ) − > 0
,
provided that :> 0 (2.12 )
Therefore , each the eigenvalues of ( ) have a negative
real part under the given conditions , so is locally
asymptotically stable. However, it is unstable otherwise.

2.4 Global stability analysis
In this part the global stability analysis for the
accumulation points, which are locally stable
asymptotically to the system (2.2)   is studied analytically
using a appropriate Lyapunov function as shown in the
following theorems.

Theorem (5.1)
Assume that the predator and scavenger free accumulation
point = (1 ,0 ,0 ) of system ( 2.2 ) is locally
asymptotically stable in the .Then is globally
asymptotically stable on the sub region ⊆ provided
that the following condition hold:+ > (2.15 )( , , , ) = ( − 1 − ) + +
It is easy to see that ( , , , ) ( , ), and( ) = 0 , and ( , , ) > 0 ; ∀( , , ) ≠ . Now
by differentiating with respect to time and carrying
some algebraic handling, given that:
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= −( − 1) − + − 1− + − − +
< −( − 1) − + − 1 − ( + − − )

Thus, is negative definite and hence is Lyapunov

function under the condition (2.15 ) and(2.15 ) . So
is a globally asymptotically stable on the sub region ⊆

and then the proof is complete

Theorem (5.2) :
Assume that the scavenger free accumulation point= ( ̅ , ,0) of system ( 2.2 ) is locally asymptotically

stable in the .Then is globally asymptotically stable
on the sub region ⊆ provided that the following
conditions hold:

+ > max( ) − max( ) (2.16 )
Proof: Consider the following function( , , ) = − ̅ − ̅ ̅ + − − +
It is easy to see that ( , , , ) ( , ), and( ) = 0 , and ( , , ) > 0 ; ∀( , , ) ≠ . Now
by differentiating with respect to time and going
some algebraic handling, given that:+ > max( ) + max( ) (2.15 )
Proof: Consider the following function= −( − ̅) − ( − ̅) + + + +− ( + )
< −( − ̅) − ( + − − )

Thus, is negative definite and hence is Lyapunov

function under the condition (2.16 ) So is a globally
asymptotically stable on the sub region ⊆ and then
the proof is complete

Theorem (5.3)
Assume that the predator free accumulation point =( ̇ ,0 , ̇) of system ( 2.2 ) is locally asymptotically stable
in the .Then is globally asymptotically stable on the
sub region ⊆ provided that the following
conditions hold:> (2.17 )> ̇ (2.17 )+ > ̇ (2.17 )
where

= ( − ̇) + + − ̇ + ̇+ + ̇+ 1
Anḋ = ( − ̇) + ̇ ̇+ ̇ + +̇
Proof: Consider the following function( , , , ) = − ̇ − ̇ ̇ + + − ̇ − ̇ ̇
It is easy to see that ( , , , ) ( , ),   and( ) = 0 ,   and ( , , ) > 0 ; ∀( , , ) ≠ .
Now by differentiating with respect to time and
going some algebraic handling ,given that

= −( − ̇) − + − ̇ + ( − ̇ ) ̇ ̇+ ̇ − + + ( − ̇)( + + − ̇+ ̇ )< −( − ̇) − + − ̇ + ( − ̇) + ̇ ̇+ ̇ + +̇ − ̇+ − ̇+ 1 = − +
Thus, is negative definite and hence is Lyapunov

function under the conditions (2.17 ) −(2.17 ) (2.11 ). So is a globally asymptotically
stable on the sub region ⊆ and then the proof is
complete ∎
Theorem (5.4) :
Assume that the infected predator free accumulation point= ( ̿, , ̿, ) of system ( 2.2 ) is locally asymptotically

stable in the .Then is globally asymptotically stable
on the sub region ⊆ provided that the following
conditions hold:̿ > ̿ (2.18 )> ̿ , > , > ̿ (2.18 )
where

̿ = ( − ̿) + ( − ̿) ( + ̿ )( + ̿ ) ,
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̿ = ( − ̿) ̿ (̿ + )( + )( + ̿ ) + ( − )( − ̿) + ( − )̿ ( − ̿ )( + )( + ̿ )
Proof: Consider the following function

( , , , ) = − ̿ − ̿ ̿ + − − + − ̿ − ̿ ̿
It is easy to see that ( , , ) ( , ) ,   and( ) = 0 ,  and ( , , ) > 0; ∀( , , ) ≠ .

Now by differentiating with respect to time and
going some algebraic handling, given that

:

= −( − ̿) − ( − ̿) ( + ̿ ) − ̿ ̿( + )( + )( + ̿ ) + ( − )( − )̿ + ( − )̿ ( − ̿ )( + )( + ̿ )
< −( − ̿) − ( − ̿) ( + ̿ ) − ̿ ̿( + )( + ̿ ) + ( − )( − )̿ + ( − )̿ ( − ̿ )( + ̿ ) = − ̿ + ̿

Thus, is negative definite and hence is Lyapunov

function under the conditions (2.18 ), (2.18 ) . So
is a globally asymptotically stable on the sub region ⊆

and then the proof is complete

6. Numerical simulation
In this part, we confirmed our obtained results in the
previous parts numerically by using Runge Kutta method
along with predictor corrector method. Note that, we use

turbo C++ in programming and matlab in plotting and then
discuss our obtained results. The system (2.2) is studied
numerically for different sets of parameters and different
sets of strating points. The objectives of this study are:
first investigate the effect of varying the value of each
parameter on the dynamical behavior of system (2.2) and
second confirm our obtained analytical results. It is
observed that, for the following set of hypothetical
parameters:

= . , = . , = . , = . , = . , = . , = . , = . , ( . )

Clearly, figure (1) shows that system (2.2) approaches
asymptotically to the positive accumulation point =
(0. 5, 0.3, 0.1) starting from two starting point and this is
confirming our obtained analytical results
Now, in order to discuss the effect of the parameters
values of system (2.2) on the dynamical behavior of the
system, the system is solved numerically for the data given

in (2.5a) with varying one parameter at each time and
sometime two parameters the obtained results are given
below.
The saturation rate in the range 0. 2 < < 0.9  ,keeping
other parameters as data given in (2.5a) ,causes extinction
in the scavenger and the system will approach to the
scavenger free accumulation point. However for 0.1 < b <

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

Time

p
o
p

prey
predator
scavenger

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

Time

p
o
p

prey
predator
scavenger



Stability analysis of prey-predator and scavenger model

39

0.2 , it is observed that system (2.2) still approach
asymptotically to the positive accumulation point.

Fig2 Time series of the solution of system (2.2)
approaches asymptotically to the scavenger free
accumulation point = (0.54, 0.420 , 0) for the datagiven
in (2.5a) with = 0.4.

On the other hand  the maximum attack of predator rate in
the range 0.6 < < 0.9  ,keeping other parameters as data
given in (2.5a) ,causes extinction in the predator and
scavenger  and the system will approach to the axial
accumulation point. However for 0.1 < < 0.6 , it is
observed that system (2.2) still approach asymptotically to
the positive  accumulation point.

Fig3 Time series of the solution of system (2.2)
approaches asymptotically to the axial accumulation point

= (0.84, 0 , 0) for the datagiven in (2.5a) with = 0.4

The death rate of predator in the range 0.5 < < 0.9,
keeping other parameters as data given in (2.5a), causes
extinction in the predator and scavenger and the system
will approach to the axial accumulation point. However
for 0.1 < < 0.5, it is observed that system (2.2) still
approach asymptotically to the positive accumulation
point.
The harvesting rate of predator in the range 0.7< < 0.9,
keeping other parameters as data given in (2.5a) ,causes
extinction in the predator and scavenger  and the system
will approach to the axial accumulation point. However
for μ=0.6, it is observed that system (2.2) still approach
asymptotically to the scavenger free accumulation point.
Further for 0.1< < 0.6 the solution of the system (2.2)
approaches to the positive accumulation point

Fig4 Time series of the solution of system (2.2) approaches asymptotically to the scavenger free accumulation point =
(0.54, 0.420 , 0) for the datagiven in (2.5a) with = 0.6

While when = 0.75 the solution of system (2.2)
approaches asymptotically to the axial accumulation point

= (0.84, 0 , 0) for the datagiven in (2.5a)

The maximum attack rate for scavenger in the range
0.1< < 0.4 ,keeping other parameters as data given in

(2.5a) ,causes extinction in the scavenger and the system
will approach to the scavenger free accumulation point
.However for 0.5 < < 0.6 , it is observed that system (2.2)
still approach asymptotically to the positive accumulation
point. Further for 0.6< < 0.9  the solution of the system
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(2.2) approaches to the predator free accumulation point
as shown in the following figure.

Fig5 Time series of the solution of system (2.2)
approaches asymptotically to the infected free
accumulation point = (0.54, 0 , 0.33) for the datagiven
in (2.5a) with = 0.4.

The harvesting  rate of scavenger in the range 0.25 < <
0.9  ,keeping other parameters as data given in (2.5a)
,causes extinction in the scavenger  and the system will
approach to the scavenger free accumulation point.
However for 0.1<E<0., it is observed that system (2.2) still
approach asymptotically to the positive  accumulation
point

CONCLUSIONS
In this paper, model have been discussed prey- predator
and scavenger model   with  linear harvesting on predator
and scavenger  populations  are discussed. the model it is
found that the dynamics of the predation were dependent
on the value for the basic eigenvalues, it is observed that
axial accumulation state , exist always  and  eigenvaluves
are negative  and all the trajectories will be approaching
towards the (DFE) if the hold the condition (2.9c). The
local and global stability of the axal accumulation point is
also discussed.

There is the scavenger free accumulation point of
system(2.2) exist provided that the condition (2.2e) is
hold . The local and global stability of the scavenger
accumulation point is also discussed by using Lyapunov
function. Further there is the predator free accumulation
point of system(2.2) exist provided that the conditions
(2.3d) ,(2.3f) is  hold . The local and global stability of the
scavenger accumulation point is also discussed by using
Lyapunov function

While  there is the positive  accumulation point of
system(2.2) exist provided that the conditions  (2.4e)
,(2.4h) is  hold . The local and global stability of the
positive accumulation point is also discussed by using
Lyapunov function and also study cases of all parameters.
Further, the effect of maximum attack rate is also seen on
the prey population. The prey population gradually
decreases and predator and scavenger population increases
as the predation rate   increases. But as we induce
harvesting in the predator and scavenger populations, the

prey population suddenly decreases to a very lower level.
It was noticed that   the harvest works to stabilize the
system, and this gives great importance to the harvest.
Thus, we can conclude that harvesting rate plays a very
important role for a stability to occur and this stability can
be controlled by harvesting
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