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ABSTRACT
Proteins are functional molecules in cells and are major targets for drug action. Designing a single drug through laboratory
methods may take minimum ten years. Therefore, the insilico approach for designing a drug can be more efficient as it
minimizes the time period to provide the patients with an effective drug. To design a rational drug, we must firstly find out
which proteins can be the drug targets in pathogenesis. Proteomics has great promise in identification of protein targets and
biochemical pathways involved in disease processes. Proteomics as a whole increasingly plays an important role in the
multi-step drug-development process. The process includes target identification and validation, lead selection, small-
molecular screening and optimization, and toxicity testing. Furthermore, sub-disciplines such as computational proteomics,
chemical proteomics, structural proteomics and topological proteomics offer significant contributions especially in
computer-aided drug design. This paper makes an attempt to design a computer assisted, structure based drug of a potent
inhibitor for Human Notch1. It also summarizes the recent progress in pharmaco-proteomics and the discipline's potential
application in insilico drug design. Acute lymphoblastic leukemia (ALL) is a malignant proliferation of lymphoid cells.
The target protein Notch1 plays important role in tumour formation. Protein sequence of Notch1 was retrieved from NCBI
and its homology was found by Blastp. Model of the target protein sequence was then generated by homology modeling.
Models were further analysed by using SAVS (PROCHECK) and validated by loop-building and energy-minimization.
Best model likely to act as receptor was selected. LIGSITE was used to search the best pocket in the receptor, where the
inhibitor could bind. For insilico drug designing, the ligand was generated from other existing drugs on that protein and
HEX was performed and was grown by LIGBUILDER. After checking their ADMET properties on OSIRIS, MOLSOFT
and MOLINSPIRATION server, an inhibitor with no toxicity risks was selected and was docked with the receptor by using
AUTODOCK 4.1. Molecular property prediction was done by using ADME-boxes. Though this drug had a low drug score
of 0.25 but had no toxicity risks and was good enough to inhibit the expression of the protein. This new inhibitor can be
used for drug development for further use.
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INTRODUCTION
The long path from genomic data to a new drug can
conceptually be divided into two parts. The first task is to
select a target protein whose molecular function is to be
moderated, in many cases, blocked by a drug molecule
binding to it. Given the target protein, the second task is to
select a suitable drug, that binds to the protein tightly, is
easy to synthesize, is bio-accessible and has no adverse
effects such as toxicity. The knowledge of the three-
dimensional structure of a protein can be of significant
help in both phases. The steric and physicochemical
complementarity of the binding site of the protein and the
drug molecule is an important, if not a dominating feature
of strong binding. If the structure of the relevant binding
site of the protein is known in detail, we can even start to
employ structure-based methods in order to develop a drug
binding tightly to the protein. Increased accessibility of
genomic data and especially, that of large-scale expression
data has opened new possibilities for search for the target
proteins. This development has prompted large-scale
investments into the new technology by many
pharmaceutical companies. The respective screening

experiments rely critically on appropriate bioinformatics
support for interpreting the generated data. Specifically,
methods are required to identify interesting differentially
expressed genes and to predict the function and structure
of putative target proteins from differential expression data
generated in an appropriate screening experiment. In this
communication bioinformatics methods for prediction of
the protein structure are described and their use towards
achieving the goal of drug designing is discussed. The
possibilities and limitations of using protein structure
knowledge towards the goal of developing new drug
therapies are also discussed.
Structure-based drug design (SBDD) is one of the several
methods in the rational drug design toolbox. Drug targets
are typically key molecules involved in a specific
metabolic or cell signaling pathway that is known, or
believed to be related to, a particular disease state. Drug
targets are most often proteins and enzymes in these
pathways. Drug compounds are designed to inhibit, restore
or otherwise modify the structure and behaviour of
disease-related proteins and enzymes. SBDD uses the
known 3D geometrical shape or structure of proteins to
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assist in the development of new drug compounds. The 3D
structure of protein targets is most often derived from x-
ray crystallography or nuclear magnetic resonance (NMR)
techniques. X-ray and NMR methods can resolve the
structure of proteins to a resolution of a few angstroms
(about 500,000 times smaller than the diameter of a human
hair). At this level of resolution, researchers can precisely
examine the interactions between atoms in protein targets
and in potential drug compounds that bind to the proteins.
This ability to work at high resolution with both proteins
and drug compounds makes SBDD one of the most
powerful methods in drug designing.  Although the time
devoted to SBDD may represent only a fraction of the
total time towards developing a marketable drug product
(Hill et al, 2004), yet it an essential and most powerful
part of entire drug lead discovery process. In case a three
dimensional structure of the target protein is not available
from experimental procedures, molecular modeling offers
the best alternative.   The use of insilico methods in drug
design has grown significantly in popularity over the past
couple of years. Indeed many pharma companies have
already adopted some type of virtual screening capability
to complement high throughput screening (HTS) methods
(Heal J, 2003).
Acute lymphoblastic leukemia
Acute lymphoblastic leukemia is also known as acute
lymphoid leukemia or acute lymphocytic leukemia (ALL).
Malignancies in this disease can arise either in T-cell or B-
cell lymphocytes. Although the cause of ALL is unknown
in most patients, several factors are associated with its
development. These factors trigger the malignant
transformation of cells, perhaps due to action of one or
more oncogenes, radiation exposure, exposure to toxins &
drugs, genetic factors and syndromes. Defects in DNA
repair mechanism also contribute to the development of
acute lymphoblastic leukemia. The majority of childhood
leukemia are of the ALL type. T-cell acute lymphoblastic
leukemia/lymphoma (T-ALL) is an aggressive tumour that
generally affects children but also arises in adults
(Goldberg, et al 2003; Moorman et al, 2007; Pui et al,
2004). Activating mutations in NOTCH1 are present in
about 50% of T-ALL cases and small molecule inhibitors
of the γ-secretase complex (GSIs), which effectively
abrogate NOTCH1 signaling, have been proposed for the
treatment of T-ALL. 60% of childhood T-cell acute
lymphoblastic leukemia (T-ALL) has mutations in the
Notch1 gene (Weng et al, 2004).
Potential drug target
NOTCH1 was chosen as an inhibitor in the present insilico
drug designing.  Multiple genes involved in anabolic
pathways are directly controlled by NOTCH1 and it
further promotes cell growth via direct transcriptional
upregulation of MYC (Palomero, 2006; Sharma et al,
2006; Weng et al 2006). Recent  identification of
activating mutations in NOTCH1 in the majority of T-cell
acute lymphoblastic leukemias (T-ALLs) has brought
major interest towards targeting the NOTCH signaling
pathway in this disease (Ferrando, 2009).  GSIs are the
first family of drugs targeting NOTCH1 signaling in T-
ALL (Tosello and Ferrando, 2009). The small molecules
GSIs, which block a critical proteolytic step required for
NOTCH1 activation, can effectively block the activity of
NOTCH1 mutant alleles. However, clinical development

of GSIs has been hampered by their low cytotoxicity
against humans. Consistently, treatment of T-ALL cell
lines harboring activating mutations in NOTCH1 with
CompE, a highly active GSI, induces cell cycle arrest in
G1 and decrease rate of anabolic cell growth which results
in a gradual reduction in cell size (Palomero, 2006; Weng
et al 2004, 2006, Chaturvedi et al, 2010).

METHODOLOGY
Protein sequence of Notch1 was retrieved from NCBI and
its homology was found by using Blastp. Model of target
protein sequence was generated by homology modeling by
using MODELLER. Models were then analysed by using
SAVS (PROCHECK) and validated by loop-building and
energy-minimization. Best model was selected, which
acted as a receptor. LIGSITE was used to search the best
pocket in the receptor, where the inhibitor could bind. For
insilico drug designing, the ligand was generated from
other existing drugs on that protein and HEX (docking
software) was performed and was grown by
LIGBUILDER. The molecular properties for absorption,
distribution, metabolism, and excretion (ADME) are
crucial for drug design (Butina et al, 2002). After checking
their ADME properties on OSIRIS, MOLSOFT and
MOLINSPIRATION server, an inhibitor with no toxicity
risks was selected and was docked with the receptor by
using AUTODOCK 4.1. Molecular property prediction
was done by using ADME-boxes.

RESULTS AND DISCUSSION
The protein sequences of the NOTCH1 inhibitor were
downloaded in FASTA format from  NCBI and a check
for structure of the query sequence in PDB was made. As
the structure was not available, an attempt was made to
build the same through homology modeling. The query
sequence was compared with the library or database of
sequences by using BLAST (Altschul et al, 1990). Protein
sequences showing 40% or more similarity with the query
sequences were taken as templates. By using this template
sequences an alignment file and atom file were created and
which acted as input for MODELLER (Sali et al, 1995;
Sanchez et al, 1997; Eswar et al, 2006). It automatically
calculates a model containing all non hydrogen atoms.
MODELLER conducts comparative protein structure
modeling by satisfaction of spatial restrains and can
perform many additional tasks including de novo
modeling of loops in protein structures, optimization of
various models of protein structures with respect to a
flexibly defined objective function, multiple alignment of
protein  sequences or structures, clustering searching of
sequences etc. The large amount of available protein X-ray
crystal structures, together with the development of more
effective homology modeling techniques, has led recently
to a steep increase in docking-based Virtual Screening
studies (Tuccinardi, 2009).
The best model generated by MODELLER was analyzed
by using Swiss PDB viewer (Guex et al, 1997). By using
Ramachandran plot (Fig.1) in Swiss PDB viewer, the
model was refined by building a loop and refine side chain
packing for energy minimization (Fig.2). This refinement
or energy minimization step was repeated until or almost
all the residues which were in disallowed regions of the
Ramachandran plot gone inside the allowed region. The
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final model was evaluated using PROCHECK online
software (Fig.3). It indicated the bad contacts in the
model. It also showed the percentage of residues present in

the Ramachandran plot i.e. core, allowed and disallowed
regions. The model hence formed, acted as our receptor
protein.

FIGURE1. Ramachandran Plot result from  SPDBviewer FIGURE 2. Loop Building using SPDBviewer

FIGURE 3. Ramachandran plot results from PROCHECK FIGURE 4. Determination of active site using Q-SiteFinder
online software

FIGURE 5. Pocket Identification using LIGSITE FIGURE 6. Visualization of Pockets using PYMOL

The potential active amino acid site was predicted by
molecular cavities and Q-Site FINDER (Fig.4) based on
energy and surface area. This site would act as best
binding site where the ligand protein molecule would be
targeted.  LIGSITE (Hendlich et al, 1997) online software
(Fig.5) was used to identify pockets (Fig.6) which were
visualised by PYMOL.

The seed ligand structure which would bind with the
active site of receptor protein was extracted from literature
available on general information of inhibitors of
NOTCH1. The ligand (inhibitor) structure was drawn
using CHEMSKETCH software (Fig.7 a,b)  which acted
as final ligand.
Molecular docking is often employed to aid in determining
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how a particular drug lead will interact with a binding
pocket. The ligand and receptor PDB files were opened in
HEX software (Fig. 8 a,b) and different parameters were
adjusted before docking, such that, parameters did not

bump or collapse with each other. The positions of ligand
and receptor were also analysed using PYMOL (fig. 9)
software.

FIGURE7(a) Usage of CHEMSKETCH FIGURE 7(b) 3-D view of Ligand (seed)

FIGURE 8(a). HEX Docking Software FIGURE8(b). Running Hex

LIGBUILDER is a general purpose program package
based on the 3-D structure of the target protein and can
automatically build ligand molecules within the binding
pocket. The HEX result (saved in PDB format) was used
as input for LIGBUILDER. The predicted ligand molecule
was drawn in CHEMSKETCH (fig.10) and viewed its 3-D
structure (fig.11).
The ligand hence designed was drawn in OSIRIS software
and drug properties were analysed. Properties with high
risks of undesired effects like mutagenicity or a poor
intestinal absorption are shown in red, whereas a green

colour indicates drug-conform behaviour (fig. 12).
MOLSOFT (Fig. 14) offers complete solutions customized
for a biotechnology or pharmaceutical company in the
areas of computational biology and chemistry. Activity
score and drug likeness for GPCR ligands, ion channel
modulators and kinase inhibitors (interactive virtual
screening), were calculated using MOLINSPIRATION by
choosing the “Predict Bioactivity” option (Fig. 13).
ADME Boxes software from pharmaAlgorithms was used
to predict Physchem properties and absorption from the
chemical structures (Fig. 15).
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Thus for insilico drug designing, the ligand which could
act as a drug against the Receptor (Notch1), and that binds
with active binding sites of the Receptor was generated
from other existing drugs on that protein and HEX was

performed and was grown by LIGBUILDER. The
effectiveness of drugs was analysed by online softwares
viz., OSIRIS, MOLSOFT, MOLINSPIRATION. The
observations on Mutagenicity, Tumourogenicity,

FIGURE 9. Visualization of Pockets using PYMOL FIGURE10. Drawing Ligand Molecule using CHEMSKETCH

FIGURE 11.   3-D view of Ligand. FIGURE12. Analysis of Drug Properties using OSIRIS

FIGURE13. Analysis of Physicochemical Properties
using MOLINSPIRATION FIGURE14. Analysis of Drug-Likeness and Molecular

Property Prediction using MOLSOFT

FIGURE15. Prediction for Physchem properties and absorption from the chemical structure using ADME boxes.
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Irritanting effects, Reproductive effects, cLogP, Solubility
(logS), Molecular Weight, Drug Likeliness and Drug score
using Osiris are presented in table 1.  All the four models
showed irritating effects but no mutagenicity or
tumourogenicity was observed in any of the models. The
cLogP (measure of compound’s hydrophilicity) value was
less than 5 in all models, which indicated reasonable
probability of being well absorbed. The absorption is
significantly affected by the aqueous solubility of a
compound. Lower the solubility, lesser the absorption. The
second compound depicted maximum solubility (-2.79)
while the fourth compound was least soluble. Molecular
weight was noted to be lowest in case of second model
(approx. 301 as calculated by all the mentioned softwares).
Compounds with less molecular weight are more likely to
be absorbed faster, therefore the low molecular weight is
the desired criteria of every drug. Though the drug
likeliness score was found to be negative for all
compounds but the second compound recorded the highest
value (-2.48). Similarly the second model obtained the
highest drug score (0.25) value.  MOLSOFT online tool
calculated the chemical properties like Molecular Formula,
Molecular Weight, Number of Hydrogen Bond Acceptors
(HBA), Number of Hydrogen Bond Donators (HBD),
molLogP (octanol/water partition coefficient), molLogS
(water solubility), Polar Surface Area (molPSA), Volume,
Number of Stereo Centers, Drug Likeness Model Score of
four models as shown in table 2. MOLINSPIRATION
calculated the molecular physicochemical properties
relevant to drug design and QSAR, including logP,
molecular polar surface area (PSA), and the rule of five

descriptors as depicted in table 3. LogP was calculated by
the methodology developed by Molinspiration as a sum of
fragment-based contributions and correction factors. This
method is very robust and is able to process practically all
organic, and most organometallic molecules. The second
model observed the maximum miLogP value (3.395).
TPSA is calculated based on the methodology published
by Ertl et al, 2000 as a sum of fragment contributions.
The second model had minimum volume (313.258) and
TPSA (81.79). "Rule of 5" properties are a set of simple
molecular descriptors used by Lipinski in formulating his
"Rule of 5". The rule states, that most "drug-like"
molecules have logP <= 5, molecular weight <= 500,
number of hydrogen bond acceptors <= 10, and number of
hydrogen bond donors <= 5. Molecules violating more
than one of these rules may have problems with
bioavailability. The rule is called "Rule of 5", because the
border values are 5, 500, 2*5, and 5. All the four models
were observed to follow this rule.  Number of rotatable
bonds (nrotb) were found to be 11(1st and 2nd model) or
10 (3rd and 4th model).
Finally the second model was docked with the receptor by
using AUTODOCK 4.1 vina and its molecular property
prediction was done by using ADME-boxes. It  can
therefore be concluded that second model can act as a
better drug as this drug had no toxicity risks like
mutagenecity, tumourogenecity and had highest drug score
of 0.25 which is, however, otherwise low, but good
enough to inhibit the expression of protein. This new
inhibitor can be used for drug development for further use.

TABLE 1: Various properties of different drug models developed as depicted by Osiris software
Ligand
Model

Mutagenicity Tumourogenicity Irritating
Effects

Reproductive
Effects

cLogP Solubilit
y logS

Molecular
Weight

Drug
Likeliness

Drug
Score

1. No No Yes Mild 4.12 -2.87 312.0 -7.39 0.18
2. No No Yes No 4.28 -2.79 301.0 -2.48 0.25
3. No No Yes No 2.91 -3.65 322.0 -11.35 0.24
4. No No Yes No 2.58 -3.82 306.0 -9.54 0.24

TABLE 2: Chemical properties of different drug models developed as depicted by Molsoft software
Molecular
Formula

Molecular
Weight

No.  of
Hydrogen
Bond
Acceptors
(HBA)

No. of
Hydroge
n Bond
Donator
s (HBD)

molLog
P

molLogS Polar
Surface
Area
(molPSA)

Volume Number of
Stereo
Centers

Drug
Likeness
Model
Score

C17H 28 O5 312.19 5 2 2.22 -1.76 65.90 356.02 2 -0.88
C16H31NO 4 301.23 4 3 3.15 -2.31 66.73 352.06 1 0.13
C17H 26N2O 4 322.19 4 3 2.16 -3.14 70.96 363.05 1 0.48
C16H 22N 2 O4 306.16 4 2 1.55 -4.18 69.75 337.75 1 -0.30

TABLE 3: Physico-chemical properties of different drug models developed as depicted by Molinspiration software
Molinspiration
Property Engine

miLogP TPSA natoms Molecula
r Weight

nON nOHN
H

nviolations nrotb Volume

v2009.01 2.819 83.832 22 312.406 5 2 0 11 314.364
v2009.01 3.395 81.79 21 301.427 5 3 0 11 313.258

v2009.01 2.793 91.422 23 322.405 6 3 0 10 314.338

v2009.01 2.813 88.265 22 306.362 6 2 0 10 291.94
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