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ABSTRACT
Quantum Monte Carlo methods are among the most accurate for calculating the ground state properties of quantum
mechanical systems. One of the most accurate QMC methods i.e. the path integral Monte Carlo (PIMC) was used in this
report to determine the ground state energy of helium atom. The calculations were based on the principles of Born-
Oppenheimer approximation and the principles of superposition; hence wave functions were not of great importance. The
ground state energies were calculated at different values of variational parameters and presented graphically. The standard
errors are found when compared with the standard theoretical values. The results obtained were presented for comparism
as well.
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INTRODUCTION
The ground state energies of molecular systems have been
calculated using different methods ranging from the
classical approaches to quantum approaches for quite a
long time. These were based on solving the time-
dependent and time-independent Schrödinger equations in
which the Born-Oppenheimer approximations or the
otherwise can be adopted.
In this work one of the quantum Monte Carlo methods i.e.
the path integral Monte Carlo method is applied to
evaluate the ground state energy of Helium atom. Though
the ground state energy of helium had been determined
using various quantum techniques such as the Green
function Monte Carlo methods by D Martins (2007), and
Hylerras algorithm by F S Koki (2009) and Variational
Monte Carlo by Doma and El-Gamal (2009) that could be
compared.
Ground state energy is the lowest energy levels which
electrons can occupy in an atom, molecule or ion. For
hydrogen molecule and the helium atom, it is referred to as
the energy level closest to the nucleus. However this
energy level can accommodate only two electrons, so for
the next heaviest element i.e. lithium, the ground state has
two electrons in the lowest energy level and one in the
second level. The second energy level can contain a
maximum of eight electrons, the third level a maximum of
eighteen electrons, and so on (2n2 electron in the nth
level). The ground state for the heavier element may
therefore have some of their electrons in quite high energy
levels. During the past few decades there had been
procedures of determining the lowest energy value of a
specific quantum system which were based mainly on
solving the Schrödinger equations, though it has transited
from so many empirical approaches to the present most
reliable quantum Monte Carlo techniques. It has become
quite

Impossible to generate analytical solutions to Schrödinger
equations in many quantum systems and as such
computational techniques solutions are preferred.
The method (PIMC)
The path integral Monte Carlo (PIMC) method was
introduced by Feynman in 1948. It provides an alternative
formulation of time-dependant Schrödinger equation.
Since its inception the method has found innumerable
applications in many areas in physics and chemistry
(Johnson and Broughton, 1997) its main attraction can be
summarized as follows: the method provides an ideal way
of obtaining the classical limit of quantum mechanics: it
provides a unified description of quantum dynamics and
equilibrium quantum statistical mechanics : it avoids the
use of wavefunction and thus is the only viable approach
to many-body problems: and it leads to powerful influence
functional methods for studying the dynamics of low-
dimensional system coupled to a harmonic bath (Feynman
and Hibbs, 1965).
The path integral formulation is based on the principles of
superposition, which leads to celebrated quantum
interference observed in the microscopic world. Thus the
amplitude for making a transition between two states is
given by the sum of amplitudes along all the possible
paths that connects these states in a specified time.
For a particle of mass m in one dimension, the amplitude
to get from a point ax at time at to the point bx at time

bt is expressed in the path formulations as a sum of
contributions from all conceivable paths that connects
these two points. The contribution of each path  tx is
proportional to a phase that is given by the action
functional   txS along the path in units of Planck’s
constant :
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PIMC is mathematically similar to diffusion Monte Carlo
[DMC] and shares many of the same advantages (Johnson
and Broughton, 1997). In fact it goes further since a trial
function is not specified and the method generates a
quantum distribution directly from the Hamiltonian.
Therefore we can define PIMC to be a QMC method
which is formulated at a positive temperature. Instead of
attempting to calculate the properties of a single quantum
state, we sum over all possible states, occupying them
according to the Boltzmann distribution. This might sound
hopeless but, Feynman’s imaginary time path integral
(Koonin and Meredith, 1990) makes it almost as easy as
DMC. The imaginary-time paths, instead of being open-
ended as they are in DMC, close after an imaginary time
  ,1 TkB where T is the temperature. Also, PIMC

seems to lead more easily to a physical interpretation of
the result of a simulation.
The path integral offers an insightful approach to time-
dependant quantum mechanics and quantum statistical
mechanics.
Strong nuclear force in the Helium atom
The helium atom contains two electrons and two protons,
but its mass is four times as great as that of a hydrogen

atom. The extra mass comes from particles called
neutrons, which are about as heavy as protons but carry no
electrical charge. Although atoms are small, atomic nuclei
are much smaller still: about 100,000 times smaller in
diameter, or roughly 10-15 meters in diameter. Within this
tiny space are the positively charged protons that pulled on
the electrons electro statically. But the protons also repel
each other, and this repulsion is extremely strong because
they are so closed together. Despite the electromagnetic
repulsion taking place in between the two protons in the
helium atom a special kind of force exist at short range
that keeps same coulomb particles together, these are the
strong nuclear force and the weak nuclear force.
The strong nuclear force is the kind of forces that holds
protons and neutrons together in the nucleus of an atom.
According to (Barrow and Tipler, 1986) these forces are
1040 times more powerful than the force of gravity. This
force binds electrically charged particles of the same
polarity (e.g. +ve/+ve or -ve/-ve) by continuously
alternating the polarity (helication direction) of the emitted
photons of the medium between them and thus continually
attract and repel the particles.
Computing the ground state energy of Helium atom

FIGURE 1: coordinates used in describing the helium atom

The diagram above represents two electrons with charge –
e and a nucleus with charge +2e.
At this point it can be considered that we had already
treated the hydrogen –like atoms i.e. the hydrogen
molecule to some certain extent, we now proceed to
discuss the next simplest system: the helium atom. In this

situation we have two electrons with coordinates r1 and r2
revolving round a nucleus with charge Z = 2 located at
point S. In dealing with the hydrogen molecule we were
able to ignore the motion of the nucleus by transforming
the center of mass. We then obtain a Schrödinger equation
for a single effective particle with a reduced mass that was
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very close to the electron mass orbiting the origin. It turns
out to be fairly difficult to transform the center of mass
when considering the three particle systems, as in the case
of helium. However, because the nucleus is much more
massive than either of the two electrons (MNuc  700
Melec)(Bhattacharyya et’al, 1996). It is a very good
approximation to assume that the nucleus sits at the center
of mass of the atom in this approximate set of center of
mass coordinates, then inter proton separation S = 0 which
indicates that one proton is on top of the other as shown in
the figure above and the electron coordinates r1 and r2
measure the distance between each electron and the
nucleus.

In the case of helium atom, a nucleus with charge Z and
infinite mass the Hamiltonian in atomic      units’ a.u. can
be interpreted as:

10 HHH 
Here the term H0 represents the columbic interaction
between the particles where as the term H1 is due to
relativistic correction to the kinetic energy and it
represents the dependence of the mass of the electron on
the velocity.
4.1 The algorithm of the code
The program calculates the exact ground state energies of
two-electron atoms E0 at an inter proton separation S = 0
which describe a natural Helium atom indicating that one
proton is on top of the other. The PIMC utilizes the time
step for all its calculations which are taken in subroutine
TSTEP and in turn uses the function ELOCAL for a given
set of configurations.  The ground state energy is found
using observations taken in every step and can be divided
into groups to estimate the step-to-step correlations in the
energy. When the requested number of groups has been
calculated, it will be prompted for the number of
additional groups. This algorithm is illustrated in the
flowchart overleaf; (figure 2)

Fig 2

RESULTS AND DISCUSSION

The ground state energy of the Helium atom was
calculated using the Path Integral method at different
values of variational parameter (β) within the context of
Born-Oppenhiemer approximations. The result is
presented graphically in fig 3 while the standard errors at
every point of variational parameter are presented in fig 4.
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FIGURE 3 Graph of Ground state energy  Vs  Variational
Parameter Beta for Helium Atom by PIMC method

FIGURE 4: Graph of Standard errors Vs Variational
Parameter (Beta) PIMC (Helium Atom)

DISCUSSIONS

Fig 3 presents the results of the ground state energies of
the Helium atom at different values of variational
parameters β as the path integral Monte Carlo
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formulations are applied to the system. It can be observed
that the lowest value of the ground state energy is found to
be -78.94eV at 0.2 Å value of variational parameter which
falls within the range that has been established by
reviewers in the field. The graph represents an upward
hyperbolic function showing that the coefficient of the
square of parameters in the axis of variational parameter β
is positive.

Fig 4 presents the deviations of the ground state energy
obtained at different values of variational parameters in
which the least deviation was recorded at 0.2 Å value of
variational parameter.

Table of comparative analysis of ground state energies of
the Helium atom obtained by other researchers in the field
with this work is shown below.
HELIUM ATOM

TABLE 1: Comparison of GSE results of Helium atom
S/N AUTHOR DATE METHOD GSE (a.u)
1 Kinoshita, T 1957 Variational (Exact) 2.9037
2 Martin, D 2007 GFQMC -2.9021
3 Koki, F. S 2009 Hyllerass Algorithm -2.9042
4 Doma and El-Gamal 2010 Variational -2.8981
5 This work 2011 PIMC (BO) -2.9023

CONCLUSIONS
The complete ground state energy of helium was
numerically determined using the path integral Monte
Carlo methods under the context of Born-Oppenheimer
approximation. This is a situation that has been considered
as the case where the inter proton separation is set to be
zero (koonin and Meredith, 1990) i.e. when the protons in
the hydrogen molecule are “on top of each other” therefore
it describes a natural helium atom. All those
aforementioned methods were extensively applied to the
system of helium atom and the ground state energy of the
helium atom was found to have the lowest value from the
path integral Monte Carlo method as -78.94eV at 0.2 Å

value of the variational parameter  which also falls
within the range that has been established by reviewers in
the field. This value which is about 99.97% accurate is in
consistent with the exact value (-78.96eV) that has been
obtained analytically by Kinoshita, T (1957) and many
other reviewers that worked in this research field; hence it
falls within the error bars of the empirical results. The
standard errors have been evaluated for the helium atom
and the deviations from the exact values were observed.
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