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ABSTRACT

Linear Spectral Mixing Model (LSMM) is the most modern image statistical technique for feature identification by
collecting spectral end-members from a digital data set having a fuzzy nature or mixel (mixed pixel) problem. For Landsat-
5 TM, the instantaneous field of view (IFOV) is large enough that pixels comprise mixtures of these features. This
inevitably means more feature cover types are included within one pixel and therefore more mixing of material spectral
signatures. Sub-pixel mixing in remote sensing dictates that pixel reflectance cannot be simply interpreted in terms of
properties of a single feature cover type. Accounting for sub-pixel variations in earth surfacial feature types is therefore an
essential step for analyzing pixel reflectance in such heterogeneous regions. So in connection of sub-pixel analysis LSMM
is the most ideal way to unmix the spectral signature of the features from a fuzzy and heterogeneous data set. It assumes
that there is no interaction between the photons reflected by the individual pixel components and will be able to determine
the purest pixels of the features. In this present study for Fractional Vegetation Cover (FVC) mapping of the Jungle mahal
region of western part of West Bengal, the Dimidiate Pixel Model (DPM) having the sub-pixel decomposition capacity has
been used where the conventional normalized difference vegetation index (NDVI) method has been altered and for
determining the pure vegetation and soil pixels (vegetation and soil spectral end-members) following the principles of
LSMM the Minimum Noise Fraction (MNF) transformation has been applied. Whole the process has been experimented
over the satellite images of the concerned study area for the year of 2000 and 2010 and the actual ground reality of the
forest status has been visualized successfully.
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INTRODUCTION include ground survey, remote sensing and a combination
Vegetation is a general term for the plant community on of the two (Tammervik et al., 2003; Gutman and Lgnatov,
the ground surface, such as forests, shrubs, grassland and 1998). Ground survey is a conventional method for
agricultural crops, and it can intercept rainfall, alleviate monitoring the FVC. Early in the 1970s Muller and
runoffs, prevent desertification and conserve soil and Ellenberg (1974) conducted a systematic research on the
water. It plays an important role in energy exchange, general method for ground survey of the FVC. Dymond et
biogeochemical and hydrological cycling processes on the al. (1992) then measured the FVC of grassland by raster
land surface as an “indicator” for studying global changes point sampling; Elvidge and Chen (1995) measured the

(Kutiel et al., 2004; Steffen, 2003). Fractional vegetation FVC of shrubs and woodland by the photo random point
cover (FVC) refers to the percentage taken by the vertical method; Senseman et al. (1996) measured the FVC by the

projected area of vegetation (including leafs, stem and resection method; and Purevdor et al. (1998) used color
branches) in the total statistical area (Jing et al., 2010; digital images acquired by a digital camera to measure the
Godinez-Alvarez et al., 2009, Anatoly et al., 2002; FVC by counting the green pixels in the image.

Purevdor et al., 1998; Bonham, 1989). It is an important Remote sensing provides the possibility for large scale or
parameter for describing the surface vegetation, a even global monitoring of the FVC (Anatoly et al., 2002;
comprehensive quantitative variable for plant community Wang et al., 2002). Some methods for retrieval of the FVC
on ground surface, and a basic data for characterizing using remotely sensed data have been developed, and the
ecosystems, playing an extremely crucial role in the study main ones include empirical, vegetation index, sub-pixel

of regional ecosystems (Jing et al., 2010; Godinez-Alvarez unmixing models (Zhou and Robson, 2001; Choudhury,
et al., 2009; Steffen, 2003; Shoshany ef al., 1996; Brazel 1987; Asrar et al., 1992), and linear spectral mixture

and Nickling, 1987). For example, vegetation cover is one models (Wu and Peng, 2010). The linear regression
of the most common parameters used in assessing the models were applied in many cases. For instance, in an
relationship between vegetation and soil erosion. In area of semi acid soil, Graetz et al. (1988) estimated the
general, soil erosion decreases with an increase in FVC of the sparse grassland using the linear regression
vegetation cover (Wen et al., 2010). model based on the Landsat TM band 5 and the measured

In terms of the state-of-art and development trend in the data of the FVC. Dymond et al. (1992) estimated the FVC
research on the FVC estimation, the methods roughly of the degraded grassland in New Zealand utilizing the
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older alluvium, fluvio-deltaic sediment overlained by
secondary laterite (double profile), fluvio-deltaic sediment
overlained by primary laterite (in situ), Platform margine
conglomerates and basement crystalline complex
(metamorphites). In the extreme north, some hills can be
seen, which are 82 mtr. to 223 mtr. in height. The land
sloping is from north-west to south-east. In its hilly
surface some rivers and streams course with their move.
Among them, some rivers meet the flow of Kangsabati in
the north, and some of them meet the Subarnarekha.
Among them, the major one is Dulung, which is on the
right side of the Subarnarekha. It is originated in Binpur
region and meets the Subarnarekha in Sankrail block. The
Subarnarekha may be called the controlling river this
upland region. This river comes from Bihar and entered
into Gopiballavpur-I block of this district and heads
towards east and then flows like a natural border of Bengal
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and Orissa in the western part of Dantan-I block. Soil
surface of this western region is dry, non-fertile and
unsuitable for habitation and cultivation. Soil type
inpaschim Medinipur district can be divided into sixteen
categories, represented as coarse loamy typic haplustalfs,
coarse loamy typic ustifluvents, fine aeric ochraqualfs,
fine loamy aeric ochraqualfs, fine loamy typic paleustalfs,
fine loamy typic ustifluvents, fine loamy typic
ustochreptas, fine loamy ulti paleustalfs, fine vertic
haplaquaepts, fine wvertic ochraqualfs, loamy lithic
ustochrepts, loamy skeletal lithic ustochreprs, residential
area, rocky outcrops, and very fine vertic haplaquepts In
lower hilly areas bush and ‘dwarf” sal trees are found.
Blocks like Binpur-I and Binpur-II, Jhargram, Sankrail,
Jamboni, Gopiballavpur-I & II, Keshiary, Dantan-I are
totally or partially included in this region.
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FIGURE 1 Location map of the study area

MATERIALS AND METHODS

In this present study LANDSAT ETM+ and TM digital
data (P/R 138/45 and 139/45) of the year of 2000, gt
November and 2010, 12™ November respectively has
been used and has been processed in the TNT mips Pro
environment.

Radiometric preprocessing

The use of multi-temporal satellite data at a large scale
using TM and ETM+ possesses a number of challenges
including geometric correction error, noise arising from
atmospheric  effect, errors arising from changing
illumination geometry, and instrument errors (Homer et
al., 2004). Such errors can introduce biases in forest
classification and change analysis.

To reduce the noise due to influence of the atmospheric
and illumination geometry, we used the techniques
developed for the National Land Cover Database of the
United States (Homer et al., 2004). Each image was
normalized for variation in solar angle and Earth-sun
distance by converting the digital number values to the top

of the atmosphere reflectance (Chander and Markham,
2003). Considering the relative uncertainty of algorithms
currently available, atmospheric correction was not
performed. Only first-order normalization conversion to at
satellite reflectance was performed. This conversion
algorithm is ‘‘physically based, automated, and does not
introduce significant errors to the data’’ (Huang et al.,
2002). Finally, mosaics were created for each decade with
no further radiometric normalization.

Dimidiate pixel model (DPM) and fractional vegetation
cover (FVC) estimation

DPM is basically a sub-pixel decomposition model for
FCV estimation. Dimidiate Pixel Model assumes that a
pixel consists of two components: pure vegetation and
non-vegetation, so the reflectance (R) of any pixel can be
presented as:

R=(R,*R;) 1

Where, R, is the is the reflectance of pure vegetation while
Rs is the reflectance of non-vegetation or soil pixel.
Linearly decomposing S into Sv and Ss, the proportion of
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vegetation area in)the thikeF(€Ccof thainfoxmhtion a Bl (Bareness index) has be
and accordingly the proportioflofcyoiltaoeandiitedean be calculated as:
Assuming the spectral response -recdiAeld EfANtRer L3Ik ARED)}* (ANRED)]
vegetation pur®.pibhel iisformation cof'tfibyged

by vegetation in the nRixed dpied adpetWhere, AREDI ectance vadubaoid P TM5
response contributed by vegetation inStéres orixdi\efiReetancaen valdefodrdlgdrand of
be expressed as the.pnadicct of TM5 Sensor, L= Coefficient, varies with
R = fc R (2) cover, Here L=2.)

Similarly, assuming the remotely s&nsed[(BrafrodhaBiag®a8)d 4+Bandl) / (Ban
received by the pure s@jl arndelthé&s+Band 3) + (Band 4+B@&@nd 1)]

informa®as contributed by soil in theéimakKgdtpesel two (equations 6 & 7) ras
can be expressed asRhanpifdflact of synthesized on principle component basi:
Ri= (Lc)*sR (3) output will carry the principle component
Based quatéons. (2),atrhce (3pectral respande vefgatation emmpmneihlensively reflects
mixed pixebeaerived: vegetation type, canomgyopathtestatarsdin pe
R = fc,iqR (lc)*s R (4) unit pixel, is determined by elements

Equatignc@h be understood as linearlyhbecoomgabichgnSitygraircalLden(sity), and is
intiRegand,y whose weights are the pooprertkEite tdfe FVC. Inserting that joint p
area taken by them respectively in théP@xedf MAY li &prifquBalbidn)., MBe can have the
1" fc. followimpproximation:

In theecasements other than vegetatifen=a(PECEpil FXEP Go) (8)

inwlded, such as water boJlyshBqldtbten e@@uation (8)ortherd® Cvegetationfqrixel an
modified by the multicomponent mixed puodelbame theilcageds to be determined f
of a mixture of only vegetation and sBMC(dnrhodireaioon dfoan remotely sensed dat
pixel), the fF\b@ darived by rEgdidyilmn QGletermininRGtigeP G,i

as: In this present study DPM is used for FV(
fc = (Ro) | (& Rso) (5) the challenge to identify the pure vegetat
Whermg,jan®.,are the spectral responsémoiirdmepuired spectral enviggpmewd Ide:
soil and pure vegetation pixels, respeetareyndTheranbarlthe bare surface. Hov
has a fairly sound theoretical basistmasplhesicwith@lgyct and the changes ir
applicable regardless of the geograpihicciatuceneEyichangre with time. Jn, additi
addition, a major advantage omolde ldismdyabdspixdlange with space depending o1
that the impacts from atmosphere, ssoolilbmaokgtwrendrsaighttygses.and color. There
vegetation type ard&,nfedunctaihs the isonlot practical to think of g, lMalkue amad ide
information including the contributionthe vefustedyllsbasedto change even for th
data by elements like the type, coliomagerightfoassaanpdadjustment, it is not n
moisture of soiRc.qwlbntains the vegé¢haticoatuglv®ITe.

information including the contributioRCipephnesdersotextymahue of all the vegeta
sensed data by elements like type pamld. sDepetmdéngofon the vegetation type
vegetation. In fact the dimidiate pixelhamgdkelofsthelinanopy, the interference
stretch based on the two redulmtrody Hackgroumfd, as well as wet ground, snow
Reg Whelry the impacts on remotely shesddtaamandtibg.oaltthe is sinthiar ob

atmosphere, soil background and veabeat@gdjoas thh@egvalee will also change witl
reduced to the minimum. TherefhvatedF¥dcapalte.eJtherefore, it is not advisabl
by Eq).(5 ide®IC.yvalue either.

In DPM, remotely sensed spectral responbkeres speldrmrarhdterd selection may be id
linearly to the FVC. CfoorvE&NVtCoflabdlnizohddrmining pure soil and vegettditdgn pixt
density) measurement NDVI has beenanesedirawnsifoomthtdhe population of data
vegetation nature and coverage. But enedyaepermedcied ttheatsame scale of meacs
in case of floristic research, NDVI isesa@meaitbweastprimeipaily pure reflectance s
background noise and the vegetation diefioreabipra veide diéic target material with
faultyhat is why to identify the vegewalycoMegragraterdals.rdfiectaseme rebdrs

nature without the noisy influence NDOM ispescameeltihieraries built from field
replaced by the SAVI (Soil adjustedprvagtdcatlidreciammdsec)they can suffer mainly
where an L factor has been used. temporal variability in reflectance prope
In this present study the NDVI methoditfesem¢ eamppepbadedts for selardimlgespect
by a nfoeld proposal for DPM. For ideatifyringmtlge including PCA (Principle
vegetation fraction both vegetation arAha&lgidisnfomPdtipomixel Purity Index), MN
needed. For getting the vegetation Nmofiecrem&tieootidhAVdtc. The present study u
(Modified advance vegetation index)meRebarsd eépntRfagd from the feature spac
2012) is seen very effective, lWwahehme &R trlespmduea Landsat ETM+ andlomMMndjigital
enhanced by applying a power functibme drideta gpgé¢csodl mixing modeling (LSM
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RESULTS & DISCUSSION

In order to successfully apply the LSMM, it was very
essential to accurately estimate the spectral end-members
for each component of soil and vegetation. The end-
members can be assumed as the purest pixels of a given
data set. These end-members were determined from the
image through different approaches like the MNF
transformation or two dimensional spectral plots of Red
and NIR bands. If those spectral plots either from two
spectral bands or two MNF transformation bands have
been given a true geometric shape, the end —members
should be collected from each of the apex. In this present
study for end-members selection MNF transformation
approach has been used instead of two dimensional scatter
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plots of two spectral bands because the scatter plots of
LANDSAT TM and ETM+ showed an asymmetrical
patterns of distributions not allowing the selection of
appropriate spectral end-members. The MNF transform is
one of the often-used methods for reducing redundancy of
information between image bands and assisting selection
of accurate and reliable end-members (Rainey et al.,
2003). The spectral end-members for vegetation and soil
were derived from the scatter plot of MNF B1 and MNF
B2 shown in figure.2 A and B. The selection of first two
coherent MNF bands was that they were found to contain
96% of the total statistical variance in TM and ETM+
image data set.
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FIGURE 2 A and B Identification of spectral end-members from the feature space of MNF Band 1 (B1) and Band 2 (B2)
for the images of year of 2000 and 2010.
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FIGURE 2. FVC map of 2000

After determining the pure vegetation and soil pixels,
above-mentioned dimidiate pixel model was implemented
by programming in the TNT mips Pro environment. The
FVC maps (Fig. 3 and 4) as of 2000 and 2010 of the study

FIGURE 3. FVC map of 2010

area have been obtained using this model. The FVC maps
of the study area have been level sliced into five zones and
FVC values accordingly have been compared (Fig.4 and
Table.1) to visualize the changing scenario.
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Zones FVC (2000) FVC (2010)
1 0.0 -0.40 0.0-0.35
2 0.40-0.47 0.35-0.45
3 0.47-0.53 0.45-0.50
4 0.53-0.61 0.50-0.61
5 0.61-1.0 0.61-1.0

TABLE 1. FVC values of each zones

The area under investigation is in generally suffering from
land degradation, soil loss and anthropogenic influences.
The extensive metamorphism and weathering is
continuously altering the soil characteristics of the area.
All these effects affect the dense forest cover over here. It
is seen from the figure 2 and 3 that the FVC is
deteriorating in nature for the case of gully heads. The
dense jungle of ‘Sal’ and ‘Eucalyptus’ is going to be
‘dwarf” and also the rill channels as well as gully floors
are also suffering from the same deterioration which
mainly promotes the land degradation. But on the other
hand in the inter-fluve area of the Kangsaboti and
Subarnarekha river, the vegetation is seen to be grown
where the FVC value is approximately 0.5 to 1.0. Besides
this if it is zone wise accounted (Fig.4), the decreasing
nature of FVC will be seen for the zone 2 and 4.which is
6.6% and 7.5% respectively.

As per different literature NDVI can be considered as a
standard environmental index though some interference of
soil background noise can be experienced. Many studies
have attempted to correlate vegetation indices (NDVI) to
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FIGURE 4. Trend of FVC (zone wise) from the year of
2000 to 2010

the fractional coverage of vegetation and soil (e.g. Carlson
and Ripley, 1997; Shanmugam, 2002) because NDVI is an
indicator sensitive to chlorophyll activity and to the
density of vegetation cover (Duncan et al., 1993). The
NDVI value in a given pixel ranges between 0 and 1,
where 0 represents 0% vegetation, while 1 represents
100% vegetation in that pixel. So in the respect of present
study the FVC outputs generated by a modified thinking,
can be correlated with the NDVI to assess the accuracy
level. Figure.5 A and B shows the correlation between the
proportion of vegetation fractions derived from DPM
following the LSMM principle and NDVI in study site for
the year of 2000 and 2010. It appears that vegetation
fraction values increase with increasing NDVI values. It
exhibits a positive correlation between vegetation fraction
with NDVI, with the squared correlation coefficient (+%)
respective of 0.92 and 0.96. This positive relationship
indicates the correctness of applicability of LSMM and the
reliability of the derived sub-pixel proportions of
vegetation.

Figure 5 A and B Validation of LSMM result — Vegetation fraction correlates very well with NDVI
(A denotes relationship for 2000 having r* of 0.92 and B denotes relationship for 2010 having r* of 0.96)

This study assessed the reliability of the LSMM results by
comparing model-derived fraction estimates with field
derived fractional cover estimates as well as image-
derived quantities. In order to compare the fraction

estimates of each continuous field (end-member) from
each of the three study sites, the first step involved
converting the output from the LSMM to the percent
covers of the different end-members. In real situations, it
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