

# INTERNATIONAL JOURNAL OF SCIENCE AND NATURE

© 2004 - 2015 Society For Science and Nature(SFSN). All Rights Reserved

www.scienceandnature.org

# EFFECT OF OIL IMPREGNATED BAGS ON *TROGODERMA GRANARIUM* EVERTS (COLEOPTERA: DERMESTIDAE) IN TERMS OF POPULATION BUILD-UP AND GRAIN DAMAGE

\*Nirzar Kulkarni, Ruchika Kataria, Sathyanarayana, N.

Plant Bio-security Division, National Institute of Plant Health Management, Rajendra Nagar, Hyderabad – 500030 \*Corresponding author email: nirzarkulkarni@gmail.com

#### ABSTRACT

*Trogoderma granarium* Everts is a serious pest of stored grains and having a status of a dangerous quarantine pest for most of the countries important from Indian export point of view. Its detection attracts serious economic and trade restrictions. It is presently controllable only by methyl bromide (CH<sub>3</sub>Br), which is facing a blanket ban in many countries due to its ozone depleting nature. Hence an alternate management strategy is envisaged by using eco-friendly, economic, effective, non-hazardous, easily available and easy to use material. A part of this IPM protocol begins with a minimal-invasive technique by exploiting the inherent effects of commonly used bags by modifying the microenvironment of the storages by impregnating the bags with repellent oils. Present paper describes the comparative efficacy of oil impregnated bags in containing this pest.

Key words: Trogoderma granarium, IPM, minimal-invasive technique, Ozone depletion, Storage grains, impregnation.

#### INTRODUCTION

The Khapra beetle, Trogoderma granarium Everts is one of the most notorious primary insect pests of stored grains (Banks, 1977; Hill, 1983). It causes direct and various indirect losses consequently leading to deterioration of grain characteristics (El Nadi et al., 2001). It is a serious pest under hot dry conditions. In fact, it has been recognized as an A2 quarantine organism for EPPO (OEPP/EPPO, 1981) and ranked as one of the 100 worst invasive species worldwide (Lowe et al., 2000). The status of Khapra beetle is of highly economic importance due to its continued occurrence on commodities imported from countries where it is indigenous, and the potential for spread due to increasing use of dry cargo containers and roll-on roll-off road transport, make it a potential threat to the global food security. If infestation is severe, the devastation is complete, reducing the grain to mere frass (EPPO, 1990). Its exuviae, shed skin and other body parts are carcinogenic to human beings. It is a polyphagous and most feared upon pest, from quarantine point of view, especially in western countries that are of strategic importance to India for exports of cereals, pulses, oilseeds, etc. The presence of this pest attracts trade restriction implications. Non-Khapra beetle countries enforce quarantine restrictions on the imported commodities from Khapra beetle countries. The US Government spent about \$15 million for its eradication programme, when it was accidentally introduced into USA (Kerr, 1981). In India, a number of export shipments have suffered heavy losses owing to detection of this pest in one or other form. Recently Russia banned imports of plant products from India owing to detection of this pest in a consignment of sesame (Reuters, 2006, HT Media, 2007). Protection of stored grains from insect damage is currently dependent on various control measures mainly on synthetic pesticides

such as fumigation with phosphine or methyl bromide or dusting with compounds like primiphos-methyl and permethrin (Price and Mills, 1988; Singh, 1990). The wide spread use of such chemicals has significant drawbacks i.e., development of strains resistant to pesticides (Zettler and Cuperus, 1990), increased costs, handling hazards, insecticide residues on grains and great threat to environment and human health. Outbreaks of environmental hazards related to contribution of fumigants such as methyl bromide on the degradation of stratospheric ozone (Taylor, 1994; Noling and Becker, 1994) initiated calls to phase out methyl bromide usage. A study conducted under laboratory conditions was planned to develop an alternate management protocol in the scheme of IPM, which would be nature friendly, effective, economical, safe, sustainable and easy to apply, for the control of the important primary insect pest of stored grains, *i. e.* Khapra beetle. The various materials evaluated are farmer friendly and do not demands an access to sophisticated control methods and / or costly equipments. A part of the study made dealt with the impregnation of commonly used jute bags and white cotton cloth bags with three repellent oils to explore the effect of oil impregnated bags; the details of which are presented in this paper.

## **MATERIALS & METHODS**

The insects were maintained in round glass jars of 1 Kg capacity, half filled with whole wheat grains and their mouths covered with double folded muslin cloth held tight with the help of 4" rubber bands around its neck. The wheat was properly dried, cleaned and conditioned. The culture was allowed to breed for three generations. The controlled conditions maintained in the laboratory were  $27\pm1^{\circ}$ C temperature,  $65\pm5$  % relative humidity and 12 h photoperiod.

White cotton-cloth bags and commonly used jute bags were impregnated with 5% (v/v) neem, pongamia and mustard oil. The bags were thoroughly drenched by spraying on both the surfaces. The required quantity of the oil was dissolved in acetone solvent and the dilution thus prepared was sprayed thoroughly with the help of a hand sprayer on the jute and cloth bags specially prepared to hold 500 gram wheat capacity. After spraying, the bags were dried under the ceiling fan and then filled with 500 gram conditioned wheat grains. Five pairs of adults were released in each of these bags and then the bags were sewed with thread (Fig.1).The observations were taken at the end of 3, 6 and 9 months. Observations were taken to determine the trend of population growth of Khapra beetle by making the interactions of bag types *vs.* impregnating oils. All the experiments were carried out in triplicates. This experiment aimed at assessing the efficacy of oil impregnated bag type in containing the population growth of the Khapra beetle.



FIGURE 1. Oil impregnated bags of jute and cotton cloth

#### RESULTS Population build-up studies Grubs

At the end of three month – period; it was observed that cotton cloth was found superior over jute when bag structure is considered. The bag impregnation experiments showed that the number of grubs present was 89.33, 89.33 and 80 in Cotton Cloth Bags and 218, 211 and 203 in Jute bags (both) impregnated with Mustard oil, Neem Oil and Pongamia Oil respectively. All treatments were superior to Control, where the number of grubs recorded at this stage was 511. 33 and 618.33 in Cotton and Jute bags respectively. The observations recorded at the end of six and nine months exhibited the similar trend though the population increased further in varying manner.

### Adults

At the end of three months; numbers of adults were more or less same in all treatments in case of cotton cloth bags, i.e. 18.67, 19.67 and 17 in Mustard, Neem and Pongamia oils respectively. Average number of adults in Cotton cloth bag was found to be 18.45. However in jute bags no adult stages were seen irrespective of the impregnating oil used.

At the end of six months; Cotton cloth was found superior over jute cloth in all cases. The impregnated bags, in order of effectiveness, were Pongamia oil impregnated bag > Neem oil impregnated bag > Mustard oil impregnated bag. At the end of nine months; the population curve of adults traversed similar path to the one in 6-month storage period. All treatments were superior to Control (Table 1).

#### **Grain Damage studies**

Percentage of grain damage was significantly more in case of jute bags. Mustard, Neem and Pongamia oils recorded the respective damage levels of 1.0, 1.0, 0.987 in case of cotton cloth bag and 2.0, 1.96 and 1.9 in Jute bags respectively. All treatments were superior to Control in which the percent damage of grain was 5.053 and 6.267 in Cotton cloth and Jute bags respectively. At the end of six and nine month-periods; the damage levels further increased in all cases but the trend of increase was similar to that of 3-month period. The detailed account of the results obtained are tabulated, statistically processed and presented in Table 2, 3 & 4. Their graphical representation is depicted in Figure 2 and 3. Thus, the observations in general indicate that, when bag structure is considered, cotton cloth was found superior over jute. All the oils were effective against Trogoderma build-up when compared with Controls and all treatments were superior to Control. The larval count increased further with storage time in all of the treated bags. Numbers of adults were more or less same in all of the treatments in case of cotton cloth bags at the end of three months and then increased with time. In case of Jute bags, however, no adult stages were seen irrespective of the impregnating oil used. Percentage of grain damage was significantly more in case of jute bags. The statistical analyses indicate that the various treatments and their interactions were significant to highly significant.

|                                                      | * 160 200 |                  | 9.00           |            | 6.00        |               | 3.00         | (I) month  |            |               |                | LSD         | Dependent Variable: No of larvae |                      | Post Hoc Tests- | lotal     | 9.00      | 6.00          | 3.00           |                   | No of larvae |              | S                                                |         |              | Jute Bag |             |         | Cloth Bag    | Cotton   |             | Type of Bag      |        | Parameter | Storage structure/ |
|------------------------------------------------------|-----------|------------------|----------------|------------|-------------|---------------|--------------|------------|------------|---------------|----------------|-------------|----------------------------------|----------------------|-----------------|-----------|-----------|---------------|----------------|-------------------|--------------|--------------|--------------------------------------------------|---------|--------------|----------|-------------|---------|--------------|----------|-------------|------------------|--------|-----------|--------------------|
|                                                      |           | 00 9             | 3.00           | 9.00       | 3.00        | 9.00          | 6.00         | (J) month  |            |               |                |             | ariable: No of                   | M                    | -               | 24        | 8         | 8             | 8              | z                 |              |              | Statistical Analysis<br>TABLE 2: Number          | - Co    | - Poj        | - Ne     | - M         |         |              | - Ne     |             |                  |        | Ţ         | tructure/          |
| The mean difference is significant at the .00 level. |           | 201 1050         | 880.87500      | -384.12500 | 496.75000   | -880.87500    | -496.75000   | (I-J)      | Difference | Mean          |                |             | larvae                           | Multiple Comparisons |                 | 711.5833  | 1133.2500 | 749.1250      | 252.3750       | Mean              |              | Descriptives | Statistical Analysis<br>TABLE 2: Number of grubs | Control | Pongamia oil | Neem oil | Mustard oil | Control | Pongamia oil | Neem oil | Mustard oil | Impregnating Oil |        |           |                    |
|                                                      |           |                  | *              |            | 0 303.78357 | 0 * 303.78357 | ) 303.78357  |            |            |               |                |             |                                  | sons                 |                 | 687.54667 | 957.38211 | 386.71416     | 203.18741      | Std. Deviation    |              | Se           | ubs                                              | 618.33  | 203          | 211      | 218         | 511.33  | 80.00        | 89.33    | 89.33       |                  | months | After 3   | Number of grups    |
|                                                      | .227      | 22               | .009           | .220       | .117        | .009          | .117         | Sig.       |            |               |                |             |                                  |                      |                 | 140.34488 | 338.48569 | 136.72410     | 71.83760       | Std. Error        |              |              |                                                  | 1072.33 | 611.33       | 630.00   | 614.33      | 844.33  | 451.67       | 489.67   | 480.33      |                  | months | After 6   | son is to          |
|                                                      | Ċ         | 5                | Ö              | ö          | 7           | Ō             | 7            |            |            |               |                | ]<br>       |                                  |                      |                 | Ľ         |           |               |                |                   |              |              | _                                                | 1207.00 | 676.67       | 723.67   | 749.33      | 0997.00 | 508.00       | 615.67   | 628.33      |                  | months | After 9   |                    |
| -                                                    | Jute han  | Cotton cloth bag |                |            |             | No of larvae  |              |            | Total      | Within Groups | Between Groups |             |                                  | No of larvae         |                 |           | Total     | Within Groups | Between Groups |                   | No of larvae |              |                                                  | 222.67  | 0            | 0        | 0           | 212.33  | 17.00        | 19.67    | 18.67       |                  | months | After 3   | INUITORI OT AUTILS |
|                                                      |           |                  | z              |            |             |               |              |            | 10872570   | 10548232      | 324337.5       | Squares     | Sum of                           |                      |                 |           | 10872570  | 7751894       | s 3120676      | Sum of<br>Squares | -            |              |                                                  | 666.33  | 48.67        | 76.33    | 72.33       | 556.33  | 37.33        | 52.67    | 48.33       |                  | months | After 6   | units              |
|                                                      |           | 12 505 3333      | Mean           |            |             |               | Descriptives | Docorintiv | 23         | 22            | -              | đŕ          |                                  |                      | ANOVA           |           | 23        | 21            | 2              | <u>đ</u>          | -            | ANOVA        |                                                  | 1400.67 | 400.00       | 427.33   | 431.66      | 1079.00 | 67.67        | 093.33   | 095.00      |                  | months | After 9   |                    |
|                                                      |           |                  |                |            |             |               | es           | 5          |            | 479465.106    | 324337.500     | Mean Square |                                  |                      | Ä               |           |           | 369137.821    | 1560337.792    | Mean Square       |              | VA           |                                                  | 6.267   | 1.90         | 1.96     | 2.00        | 5.053   | 0.907        | 1.000    | 1.000       |                  | months | After 3   | Urain uainage (%)  |
|                                                      |           |                  | Std. Deviation |            |             |               |              |            |            |               | .676           | т           |                                  |                      |                 |           |           |               | 2 4.227        | ю́<br>т           |              |              |                                                  | 15.633  | 4.07         | 4.23     | 4.12        | 13.733  | 03.10        | 03.70    | 03.40       |                  | months | After 6   | iage (70)          |
| -01-01                                               | 037 31103 | 30203 231        | Std. Error     | _          |             |               |              |            |            |               |                | Sig.        |                                  |                      |                 |           |           |               | 7 .029         | Sig.              |              |              |                                                  | 36.000  | 09.70        | 10.06    | 11.16       | 21.107  | 09.00        | 09.03    | 09.91       |                  | months | After 9   |                    |

ISSN 2229 - 6441

TABLE 1: Effect of oil impregnated bags on population build-up of Trogoderma granarium Everts (with 5 pairs of adult insects)

716

|              |    | Descriptives | ŭ                         |                      |                         | ANOVA | VA          |       |      |
|--------------|----|--------------|---------------------------|----------------------|-------------------------|-------|-------------|-------|------|
| No of larvae |    |              |                           |                      | No of larvae            |       |             |       |      |
|              |    |              |                           |                      | Sum of                  |       |             |       |      |
|              | 2  |              |                           |                      | Squares                 | df    | Mean Square | п     | Sig. |
|              | z  | Mean         | Std. Deviation Std. Error | sta. Error           | Between Groups 4998068  | c.    | 1666022 500 | 5 672 | 900  |
| Mustard oil  | 6  | 463.0000     | 257.68663 105.20013       | 105.20013            |                         |       |             |       |      |
| Neem oil     | 6  | 460.0000     | 254.35172 103.83866       | 103.83866            | vvitriin Groups 58/4502 | 20    | 293725.117  |       |      |
| Pongamia oil | 6  | 421.8333     | 234.07983 95.56269        | 95.56269             | Total 10872570          | 23    |             |       |      |
| Control      | 9  | 1501.5000    |                           | 405.99875            |                         |       |             |       |      |
| Total        | VC |              |                           | 607 E1667 110 31 100 |                         |       |             |       |      |

Post Hoc Tests-

# Multiple Comparisons

Dependent Variable: No of larvae LSD

|              |              | Mean                  |                    |      |
|--------------|--------------|-----------------------|--------------------|------|
|              |              | Difference            |                    | 2    |
| Mustard oil  | Neem oil     | 3.00000               | 312.90314          | .992 |
|              | Pongamia oil | 41.16667              | 41.16667 312.90314 | .897 |
|              | Control      | -1038.5000* 312.90314 | 312.90314          | .003 |
| Neem oil     | Mustard oil  | -3.00000              | 312.90314          | .992 |
|              | Pongamia oil | 38.16667              | 312.90314          | .904 |
|              | Control      | -1041.5000* 312.90314 | 312.90314          | .003 |
| Pongamia oil | Mustard oil  | -41.16667 312.90314   | 312.90314          | .897 |
|              | Neem oil     | -38.16667             | 312.90314          | .904 |
|              | Control      | -1079.6667 312.90314  | 312.90314          | .003 |
| Control      | Mustard oil  | 1038.50000* 312.90314 | 312.90314          | .003 |
|              | Neem oil     | 1041.50000 312.90314  | 312.90314          | .003 |
|              | Pongamia oil | 1079.66667 312.90314  | 312.90314          | .003 |
|              |              |                       |                    |      |

\*. The mean difference is significant at the .05 level.

|              |             |             |               |           |              |              |              | Total       | Control      | Pongamia oil | Neem oil    | Mustard oil      |                    |     | No of adults                     |                      | . Ine i                                             | *             | 0.00           | 9 00        |            | 6.00         |              | 3.00       | (I) month  |                |                   | LSD          |                      | Post Hoc Tests- | Total 24  | -             | 6.00 8         | 3.00 8   | N              | No. of Adults |             |
|--------------|-------------|-------------|---------------|-----------|--------------|--------------|--------------|-------------|--------------|--------------|-------------|------------------|--------------------|-----|----------------------------------|----------------------|-----------------------------------------------------|---------------|----------------|-------------|------------|--------------|--------------|------------|------------|----------------|-------------------|--------------|----------------------|-----------------|-----------|---------------|----------------|----------|----------------|---------------|-------------|
|              |             |             |               |           |              |              |              | 24          | 6            | oil<br>6     | 6           |                  | z                  | 5   | ħ                                |                      | The mean difference is significant at the .us level | 0.00          | 6 00           | 3 00        | 9.00       | 3.00         | 9.00         | 6.00       | (J) month  |                |                   | LSD          | MUIT                 |                 | 249.7917  | 499.3750      | 188.6250       | 61.3750  | Mean           | lts           |             |
|              |             |             |               |           |              |              |              | 249.7917    | 689.5000     | 95.1667      | 103.5000    | 111.0000         | Mean               |     |                                  | Descriptives         | s significant at                                    |               | 310 75000      | 438 00000 * | -310.75000 | 127.25000    | -438.00000 * | -127.25000 | (I-J)      | Mean           |                   | adults       | Multiple Comparisons |                 | 363.93179 |               | 263.25324      | 96.79719 | Std. Deviation |               | Description |
|              |             |             |               |           |              |              |              | 363.93179   | 473.69727    | 151.22357    | 163.03711   |                  | Std.               |     |                                  | 0,                   | the .Ub level.                                      |               | 163 08023      | 163 08023   | 163.08023  | 163.08023    | 163.08023    | 163.08023  | Std. Error |                |                   |              | ons                  |                 |           |               |                |          |                |               |             |
|              |             |             |               |           |              |              | ſ            | 79 74.28727 | 193.38610    | 61.73676     | 1 66.55962  |                  | 6                  |     |                                  |                      |                                                     | .070          | .014           | 014         | .070       | .444         | .014         | .444       | Siq.       |                |                   |              |                      |                 | 74.28727  | 173.37459     | 93.07408       | 34.22298 | Std. error     |               |             |
|              |             | Control     |               |           | Pongamia oil |              |              | Neem oil    |              |              | Mustard oil | (I) impregnation |                    | LSD | Dependent Variable: No of adults |                      | Total                                               | Within Groups | Between Groups |             |            | No of adults |              | Total      | Total      | Between Groups |                   | No of adults |                      |                 | Total     | Within Groups | Between Groups |          |                | No. of Adults |             |
| Pongamia oil | Neem oil    | Mustard oil | Control       | Neem oil  | Mustard oil  | Control      | Pongamia oil | Mustard oil | Control      | Pongamia oil | Neem oil    | (J) impregnation |                    |     | : No of adults                   | Multiple             | 3046266                                             | 1498766       | 1547500        |             | Sum of     |              |              | 3040200    | 2952891    | 93375.375      | Sum of<br>Squares | )            |                      |                 | 3046266   | 2233994       | 812272.3       | res      | Sum of         |               |             |
|              |             |             |               |           |              |              |              |             |              |              |             |                  |                    |     |                                  | Multiple Comparisons | 23                                                  | 20            | ω              | đf          |            |              | ANOVA        | 22         | 33         | _              | ₽ <b>f</b>        |              | ANOVA                |                 | 23        | 21            | 2              |          | df             |               | ANOVA       |
| 594.33333 *  | 586.00000 * | 578.50000 * | -594.333333 * | -8.33333  | -15.83333    | -586.00000 * | 8.33333      | -7.50000    | -578.50000 * | 15.83333     | 7.50000     | (I-J)            | Mean<br>Difference |     |                                  | risons               |                                                     | 74938.292     | 515833.375     | Mean Square |            |              |              |            | 134222.299 | 93375.375      | Mean Square       |              | Ä                    |                 |           | 106380.649    | 406136.167     | L.       | Mean Square    |               | 'A          |
| 158.04882    | 158.04882   | 158.04882   | 158.04882     | 158.04882 | 158.04882    | 158.04882    | 158.04882    | 158.04882   | 158.04882    | 158.04882    | 158.04882   | Std. Error       |                    |     |                                  |                      |                                                     |               | 6.883          | п           |            |              |              | ╞          |            | .696           | т                 |              |                      |                 |           | 19            | 57 3.818       |          | iare F         |               |             |
| .001         | .001        | .002        | .001          | .958      | .921         | .001         | .958         | .963        | .002         | .921         | .963        | Sig.             |                    |     |                                  |                      |                                                     |               | .002           | Sig.        |            |              |              |            |            | .413           | Sig.              |              |                      |                 |           |               | .039           | d        | Sig.           |               |             |

718

| Total      | Control     | Pongamia oil    | Neem oil         | Mustard oil |                |                            | No. of Kernels damaged (in 1000 kernels) |              | lotal         | Jute bag        | Cotton cloth bag |                   | No. of Kernels damaged (in 1000 kernels) |              |                 | Total                                                | Within Groups | Retween Groun |             | No. of Kernels damaged (in 1000 kernels) |           |           | Total       | 9.00       | 6.00     | 3.00    |                    |                                      | No. of Kern                              |              |
|------------|-------------|-----------------|------------------|-------------|----------------|----------------------------|------------------------------------------|--------------|---------------|-----------------|------------------|-------------------|------------------------------------------|--------------|-----------------|------------------------------------------------------|---------------|---------------|-------------|------------------------------------------|-----------|-----------|-------------|------------|----------|---------|--------------------|--------------------------------------|------------------------------------------|--------------|
| 24         | 6           | 9               | 6                | 9           | z              |                            | damaged (in                              |              | 24            | 12              | g 12             | z                 | damaged (in                              |              |                 |                                                      | s 124210.     |               | Sum of      | s damaged (ii                            |           | -         |             |            | 8        | 8       | z                  |                                      | No. of Kernels damaged (in 1000 kernels) |              |
| 67.9167    | 163.0000    | 34.3333         | 36.5000          | 37.8333     | Mean           |                            | 1000 kernels                             | Descriptives | 4 67.9167     |                 | 2 46.5000        | Mean              | 1000 kerne                               | Descriptives |                 | 23                                                   | 21            |               |             | ר 1000 kerne                             | ANOVA     |           | 67.9167     | 113.6250   | 64.8750  | 8       | Mean               |                                      | d (in 1000 ke                            | Descriptives |
| 7 82.24085 | 0 113.47423 | 3 33.17027      |                  | -           | Std. Deviation |                            | S)                                       | es           | 67   82.24085 |                 | 00 63.22615      | Std. Deviation    | ls)                                      | es           |                 |                                                      | 5914.77 2.030 |               |             | ls)                                      |           | ŀ         |             |            |          |         | Std. Deviation Sto |                                      | ernels)                                  | es           |
| 16.78734   | 46.32566    | 13.54171        | 14.04932         | 15.69802    | Std. Error     |                            |                                          |              | 16.78734      | 27.60389        | 18.25182         | Std. Error        |                                          |              |                 |                                                      | .094          | Sig.          |             |                                          |           |           | 16.78734    | 42.93930   | 17.95176 | 7.21048 | Std. Error         |                                      |                                          |              |
|            | Total       | Within Groups 8 | Between Groups 7 |             |                | No. of Kernels damaged (in |                                          |              | Total 1       | Within Groups 1 | Between Groups11 | 6                 | No. of Kernels damaged (ir               |              |                 | *. The mear                                          | 6             | 9.00 3        | 9           | 6.00 3                                   | 9         | 3.00 6    | (I) month ( |            |          |         | LSD                | Dependent Variable: No.              |                                          |              |
| 10000110   | 155561.8    | 83197.667       | 72364.167        | Squares     | Sum of         |                            |                                          |              | 155561.8      | 144553.7        | 11008.167        | Sum of<br>Squares |                                          |              |                 | ı difference                                         | 6.00          | 3.00          | 9.00        | 3.00                                     | 9.00      | 6.00      | (J) month   |            |          |         |                    |                                      | Mul                                      |              |
| 10         | 23          | 20              | ω                | đţ          | ;              | 1000 kernels               | ANOVA                                    |              | 23            | 22              |                  | df                | 1000 kernels)                            | ANOVA        | Post Hoc Tests- | is significan                                        | 48.75000      | 88.37500      | -48.75000   | 39.62500                                 | -88.37500 | -39.62500 | (I-J)       | Difference | Mean     |         |                    | Kernels da                           | Multiple Comparisons                     |              |
|            |             | 4159.883        | 24121.389        | Mean Square | )              |                            | VA                                       |              |               | 6570.621        | 11008.167        | Mean Square       | s)                                       | IA           | Tests-          | The mean difference is significant at the .05 level. | 00 38.45378   | 00 * 38.45378 | 00 38.45378 | 00 38.45378                              | *         |           | Std. Error  | <i></i> е  |          |         | -                  | of Kernels damaged (in 1000 kernels) | arisons                                  |              |
|            |             |                 | 5.799            | т           | I              |                            |                                          |              |               |                 | 1.675            | п                 |                                          |              |                 |                                                      |               |               |             |                                          |           |           | r Sig.      |            |          |         |                    | ernels)                              |                                          |              |
|            |             |                 |                  | Sig.        | 2              |                            |                                          |              |               |                 | .209             | Sig.              |                                          |              |                 |                                                      | .219          | .032          | .219        | .315                                     | .032      | .315      | ġ           |            |          |         |                    |                                      |                                          |              |

TABLE 4: Grain Damage

#### Post Hoc Tests-

#### Multiple Comparisons

Dependent Variable: No. of Kernels damaged (in 1000 kernels) LSD

| -                |                  |                             |            |      |
|------------------|------------------|-----------------------------|------------|------|
| (I) impregnation | (J) impregnation | Mean<br>Difference<br>(I-J) | Std. Error | Sig. |
| Mustard oil      | Neem oil         | 1.33333                     | 37.23745   | .972 |
|                  | Pongamia oil     | 3.50000                     | 37.23745   | .926 |
|                  | Control          | -125.16667 *                | 37.23745   | .003 |
| Neem oil         | Mustard oil      | -1.33333                    | 37.23745   | .972 |
|                  | Pongamia oil     | 2.16667                     | 37.23745   | .954 |
|                  | Control          | -126.50000 *                | 37.23745   | .003 |
| Pongamia oil     | Mustard oil      | -3.50000                    | 37.23745   | .926 |
|                  | Neem oil         | -2.16667                    | 37.23745   | .954 |
|                  | Control          | -128.66667 *                | 37.23745   | .003 |
| Control          | Mustard oil      | 125.16667 *                 | 37.23745   | .003 |
|                  | Neem oil         | 126.50000 *                 | 37.23745   | .003 |
|                  | Pongamia oil     | 128.66667 *                 | 37.23745   | .003 |

\*. The mean difference is significant at the .05 level.

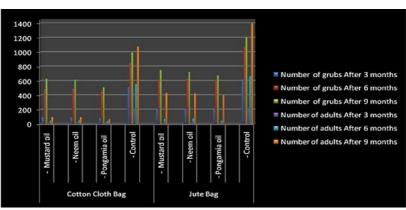



FIGURE 2. Effect of oil impregnated bags on population build-up of Trogoderma granarium Evert

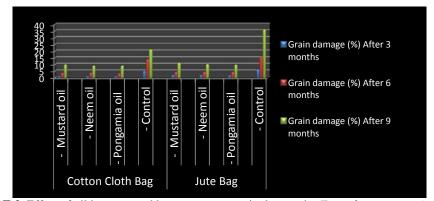



FIGURE 3. Effect of oil impregnated bag on percent grain damage by Trogoderma granarium Everts

## DISCUSSIONS

Cotton cloth bags were found superior over jute bags. The impregnating oils did not differ much in their efficacy but all of them were superior to the Controls. The population build-up increased with time. The grain damage was directly proportional to the population build-up and to the passage of time. Thus, some protection was offered at alltime stages *i.e.* three, six and nine months as compared to Controls and the impregnation of the bags is useful in excluding and / or repelling the insects. Present investigations reveal that the closeness of the weave of bagging material is indeed important as shown in case of Jute bags. The adults escaped the impregnated jute bags probably after egg laying. At the end of three months practically no live adult was seen in jute bags irrespective of the impregnating oil. In case of cotton cloth bags they could not escape due to its close weave. Parkin (1948) reported, while experimenting with DDT impregnation of sacks, that if the treated material is of sufficiently close weave, it affords some mechanical hindrance to penetration by insects. Meena and Bhargava (2009) reported that bag drenching with neem and mustard oils in gunny and cotton bags offered protection from Corcyra cephalonica upto two months. Cotton bags were found superior to gunny bags. Anwar et al. (2005) tried neem oil with different concentrations at the intervals of 30, 60 and 90 days on packaging materials of two different densities. Significant changes were observed due to type of packaging material. Deterrence to penetration decreased with passage of time. It is concluded that the impregnating the bags with repellent oils is effective. Cotton-cloth bags are recommended over jute bags. The jute bags can also be used for storage but only if impregnated with repellent oils and if the produce is planned for short-time storage *i.e.* for less than three months.

#### ACKNOWLEDGEMENT

The authors acknowledge the Director General, National Institute of Plant Health Management, Hyderabad for providing necessary facilities. The authors are grateful to Dr. G.Maruthi Ram (Professor) and Dr. Narsi Reddy of Osmania University, Hyderabad for his valuable suggestions, comments and immense support.

#### REFRENCES

Anwar, M., Ashfaq, M, Hasan, Mansoor-ul and Anjum, F. M. (2005) Efficacy of *Azhadirachta indica* L. oil on bagging material against some insect pests of wheat stored in warehouses. Pak Entomol., 27(1), 89-90.

Banks, H.J. (1977) Distribution and establishment of *Trogoderma granarium* Everts (Coleoptera: Dermestidae) climatic and other factors. J. Stored Prod Res., 13, 183 – 202.

El Nadi, A.H., Elhag, E.A., Zaitoon, A.A. and Al-Doghairi, M.A. (2001) Toxicity of three plant extracts to *Trogoderma granarium* Everts (Coleoptera: Dermestidae). Pak. J. Biol. Sci., 4, 1503 – 1505.

EPPO, (1990) Data sheets on Quarantine pests-Trogoderma granarium, @ http://www.eppo.org/ QUARA NTINE/insects/ *Trogoderma\_granarium*/ TROGGA\_ ds. pdf., A2, 121.

Hill, P. (1983) Agricultural insect pests of the tropics and their control. Cambridge Univ. Press. Pp; 746.

Kerr, J.A.(1981) Khapra beetle returns. Pest control, 49(12), 24 - 25.

Lowe, S., Browne, M., Boudjelas, S and DePoorter, M. (2000) 100 of the World's Worst Invasive Alien Species: a selection from the global invasive species database. Invasive Species Specialist Group, World Conservation Union (IUCN).http://www.issg.org/ booklet. pdf. Accessed 27 September 2005

Meena, B.L. & Bhargava, M.C. (2009) Impregnation of Packing Materials on infestation of *Corcyra cephalonica* Stainton in Groundnut. Annals of Plant Protection Sciences, 17(1), 99-102.

Noling, J.W. and Becker, J.O. (1994) The challenge of research and extension to define and implement alternatives to methyl bromide. J. Haematol., 26, 573 – 586.

Parkin, E. A. (1948) D.D.T. Impregnation of Sacks for the Protection of Stored Cereals against Insect Infestation. Annals of Applied Biology, 35 (2), 233-242.

Price, L.A. and Mills, K.A. (1988) The toxicity of phosphine to the immature stages of resistant and susceptible strains of some common stored product beetles and implications for their control. J. Stored Prod. Res., 24, 51-59.

Reuters, India (2006) Russia bans plant products from India due to pest. Reuters News dated Wed Jan 23, 2008, 2:46 pm IST @ http://in.reuters.com /articlePrint? articleI d=INIdia-31546120080123

Singh, S.R. (1990). Insect pests of tropical food legumes. Wiley, Chichester 451 pp.

Taylor, R.W.D. (1994) Methyl bromide. Is there any future for this fumigant. J. Stored Prod. Res., 30, 253 – 260.

Zettler, J.L. & Cuperus, G.W. (1990) Pesticide resistance in *Tribolium castaneum* (Coleoptera: Tenebrionidae) and *Rhizopertha dominica* (Coleoptera: Bostrychidae) in wheat. J. Econ Entomol., 83, 1677 – 1681.