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ABSTRACT
Genome-wide association studies (GWAS) have a powerful strategy to detect the genetic contributors to complex traits in
livestock. GWAS are based on discovery of new genetic variants that effect a phenotype of animal. For GWAS, we
consider ethical considerations, study design, selection of phenotype of animal, power considerations, sample tracking,
storage issues and genotyping product selection. During execution of GWAS, important steps involves DNA quantity and
preparation, genotyping methods, quality control checks of genotype data, imputation, tests of association and replication
of association signals. The field of animal genetics can help guide an investigator in making practical and methodological
choices that will help to determine the overall quality of GWAS results. GWAS is helpful to be aware of these aspects to
maximize the likelihood of success, mainly where there is an opportunity for implementing them prospectively in
livestock.
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INTRODUCTION
In 90’s, QTL mapping was largely based on microsatellite
markers (Lipkin et al., 1988). Quantitative trait loci (QTL)
were the preferred method to detect genetic variation for
economically important traits at the genomewide level.
Reported QTLs were detected based on microsatellite
markers with low resolution map and the confidence
interval (CI) covers more than 20cm. So, it is very difficult
to identify the important genes for economic traits of
interest based on the information. The detection of causal
mutations that underlying QTLs has been targeting in
domestic animals. Till date, hundreds of QTLs have been
identified in various independent studies (Sharma et al.,
2015; Monolio et al., 2010). GWAS is a new technique for
the identification of causal genes for economically
important traits in animal (Pearson and Manolio, 2008;
Johnson and O’Donnell, 2009). SNP along with the
phenotype and pedigree information are utilized for gene
mapping. GWAS has become feasible in humans as well
as in livestock animals as a result of the development of
large amount collections of SNPs and the development of
cost-effective methods for large-scale SNP analysis (Bush
and Moore, 2012; Altmuller et al., 2001). As compared to
traditional QTL mapping strategies, GWAS covers the
major advantages both in the power to detect causal
variants with modest effects and indicating the narrower
genomic regions that harbor causal variants (Risch and
Merikangas, 1996; Greely, 2007). GWAS is a new ideal
technique to discover the major genes for complex traits
and is a main way to study the genetic mechanism of
complex traits of livestock (Ikram et al., 2010).

PUBLICATIONS ON GWAS
The first successful GWAS was published in 2005 (Klein
et al., 2005) and investigated patients with age-related
macular degeneration. It is seen that two SNPs which had
significantly altered gene frequency when comparing with
healthy controls. As of 2011, hundreds or thousands of
individuals are tested and over 1,200 human GWAS have
examined above 200 diseases and traits (November et al.,
2008).

PROGRESS OF GWAS IN DOMESTIC ANIMALS
Genomic sequences were available for many livestock
species. Large numbers of SNPs were discovered as a
result of by-product of sequencing. In domestic animal,
GWAS has gained popularity in mapping QTL of
economic importance traits. Different regions and genes
are found to be associated with the same trait in different
breeds of the same species. GWAS has proved to be a
noval method to identify genes associated with various
phenotypes. GWAS was first used in the analysis of
human and animal disease and great progress was created.
GWAS was extended to the field of livestock genetics and
breeding when genomic sequences were available for
many domestic species and large numbers of SNPs were
discovered due to by-product of sequencing or in
subsequent re-sequencing. There are several of
commercial SNP chip available for cattle (50,000 SNPs;
Illumina BovineSNP50 BeadChip), dogs (22,362 SNPs;
Illumina CanineSNP20 BeadChip), sheep (56,000 SNPs),
pigs (60,000 SNPs; Illumina PorcineSNP60 BeadChip),
horses (54,602 SNPs; Illimina EquineSNP50 BeadChip)
and chickens (60,000 SNPs; Illumina ChickenSNP60
BeadChip) reported by (Zhang et al., 2012). The
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application of GWAS to livestock has only occurred
relatively recently and there have been a series of results

reported, especially from the analysis of the genetic
mechanisms of complex traits.

FIRST GWAS IN DIFFERENT ANIMALS

ASSUMPTIONS IN THE ANALYSIS OF GWAS
Significant associations can be identified due to the SNPs
are in linkage disequilibrium (LD) with the causative
mutations for the complex traits of interest. The high
density of SNP markers in the chip used in GWAS was
sufficient to detect the LD between SNP markers and
causative mutations (Barsh et al., 2012; Danesh and
Pepys, 2009).

ADVANTAGES OF GWAS
1. Potential to discover new candidate genes not

identified through other methodological processes
(Haines et al., 2005; Ehret et al., 2011).

2. Rules out specific genetic association (Loannidis et
al., 2009).

3. Identifies the mutations explaining few percent of
phenotypic variant (Kathiresan et al., 2009).

4. Biological pathway of the trait does not have to be
known (Mather et al., 2008).

STATISTICAL SIGNIFICANCE CRITERIA IN
GWAS
To obtain statistical significance, a GWAS must include at
least 100,000 markers and most of which are inherited
SNPs or copy number variants (CNVs). The large numbers
of statistical tests that are necessary mainly increase the
likelihood of false positives (Schera et al., 1995; Sanna et
al., 2011). Due to this risk, the accepted threshold for

statistical significance in GWAS is < 5*10
-8.

INDICATIONS OF GWAS
Correct statistical methods are necessary to reduce the risk
of multiple false positive results and avoid GWAS when
statistical power is limited by small sample size (Folkersen
et al., 2010). Larger sample sizes are required to identifly
an association when multiple genes are involved in a trait
(Fareed and Afzal, 2013; Thomas et al., 2009).

LIMITATION OF GWAS
1. A large study of population is required which detects

association, not causation (Purcell et al., 2007).
2. Identifies specific location not complete gene

(Marchini and Howie, 2010).
3. Focus on common variants and many associated

variants are not causal.
4. Unavailability of funding agencies (Howie et al., 2011;

Sebastiani et al., 2011).

5. GWAS have many issues and limitations that can be
taken care of through proper quality control and study
setup (Visscher et al., 2012).

6. Lack of well-defined case and control groups and
insufficient sample size for population stratification are
common problems (Visscher et al., 2011).

7. GWAS can be problematic due to massive number of
statistical tests performed presents an unprecedented
potential for false-positive results (Bauer et al., 2011).

8. A high profile GWA study investigating individuals
with very long life spans in order to detect SNPs
associated with longevity has been mentioned (Dube et
al., 2011).

9. GWAS have attracted more fundamental criticism due
to their assumption that common genetic (Wellome
trust case control consortium, 2007).

10.More recently, the fastly decreasing price of complete
genome sequencing have also provided a realistic
alternative to genotyping array-based GWAS (Scott
and Hebbring., 2014).

CHALLENGES OF GWAS
Mixed models that handle population structure by
accounting for the amount of phenotypic covariance
(Clarke et al., 2011). Mixed models have been applied to
GWAS, and can markedly reduce the number of false
positive associations. Lack of statistical knowledge
remains one of the major glitches in GWA projects (Hill et
al., 2010).

APPLICATION OF GWAS
1. To associate between the variations in genotypes and

phenotypes to identify the   causal genetic mechanism.
2. To identify QTL underlying many common, complex

disease.
3. To associate a trait with a region in the genome in

order to map the clinically and economically important
QTLs.

FUTURE OF GWAS
GWAS in domestic animals will focus on the
identification of causative mutations for economically
important traits. The findings will inevitably facilitate the
understanding of the genetic architecture of complex traits
in domestic animals and practical improving the breeding
programmes. In future, further, understanding of the roles
of epistasis (gene–gene interactions), gene–environment
interactions, and copy number variants are anticipated to

ANIMAL YEAR SNP CHIP TRAIT REFERENCES
Cattle 2009 50k Meat quality Zhang et al.(2012)
Buffalo 2013 90k Milk yield Hndorff et al.(2009)
Pig 2012 60k Androstenone Zhang et al.(2012)
Horse 2010 50k Racing distance Hill et al.(2010)
Sheep 2011 50k Horn morphology Johnston et al.(2011)
Dog 2010 50k DM Zhang et al.(2012)
Chicken 2007 3k Fatness Zhang et al.(2012)
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provide additional insights into our understanding of
complex human and animal disorders.

NEW ADVANCES IN GWAS
High density SNP chips – Up to 7 lakh SNPs. Whole
Genome re-sequencing. Functional genomics – selection
based on function of each gene.

RECENT SUCCESS IN ANIMAL GENETICS
GWAS of footrot in Texel sheep: This is the first study
based on a genome-wide association approach that
investigates the links between ovine footrot scores and
molecular polymorphisms in Texel sheep using the ovine
50 K SNP array after quality control. Our aim was to
identify molecular predictors of footrot resistance.

CONCLUSION
Genetics has come a long way since 1983 when the
genetic markers were first used for the improvement of
crops and livestock .With ever advancing technology and
better knowledge of genetic mechanisms; we are surely a
step closer to the understanding of complex traits. The
challenges of GWAS include carefully choosing a
homogeneous population for the study and to account for
population stratification. The statistical models, if
carefully chosen, can be useful to minimize the chances of
false associations.
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