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ABSTRACT
One hundred twenty five recombinant inbred lines derived from the cross of WH 730 (thermotolerent) and WH 147
(thermosensetive), were evaluated to study the genetic diversity for morpho-physiological traits under terminal heat stress
conditions. Eleven clusters were formed by grouping 125 RILs and their parents in such a way that genotypes within
each cluster had smaller D² value than those in other clusters. Differences in proportion of contribution of each character
to total diversity were observed and plant height ranked first by contributing 35.17% to divergence of genotypes, followed
by membrane thermostability (27.18%), stomatal conductance (15.24%), days to heading (8.72%) and canopy temperature
depression (3.85%). The principal component analysis showed that the first four principal components could account for
74.90 percent of the total variation and mainly associated with plant height, chlorophyll fluorescence, grain yield per plant,
membrane thermostability, canopy temperature depression, days to heading, plant height and days to maturity.

KEY WORDS: Recombinant Inbred Lines, genetic diversity, heat stress, canopy temperature depression, membrane thermostability and
chlorophyll fluorescence.

INTRODUCTION
Wheat, the most widely grown crop in the world in terms
of total harvested area (Leff et al., 2004),  is an essential
component of the global food security by contributing
about one-fifth of human caloric consumption (Shiferaw et
al., 2013). High temperature stress has numerous effects
on plants in terms of physiology, biochemistry and gene
regulation pathways (Bita and Gerats, 2013). In wheat, a
yield loss of 3–17% for each degree rise in temperature is
estimated (Lobell et al., 2008). High temperature can
damage the inter-molecular interactions needed for proper
growth, leading to catastrophic loss of crop productivity,
thus remain as a serious serious challenge in sustaining
high production. Acquired thermotolerance is a well-
known adaptive phenomenon, refers to the ability of an
organism to cope with excessively high temperatures. In
view of global warming and changing scenario of the
environmental conditions, it is imperative to direct
breeding approaches toward developing wheat varieties
adapted to warm temperatures. Existence of genetic
variability in heat stress tolerance plays a crucial
importance in relation to the development of more tolerant
cultivars. Comprehensive and in-depth knowledge of
divergence helps in framing a successful breeding
programme. Estimation of degree of divergence between
biological population and computation of relevant
contribution of different components to the total
divergence plays a vital role in planning breeding
programme to develop superior cultivars. Different high
temperature stress-related traits have received considerable
attention, in particular cell membrane stability (Blum and
Ebercon, 1981; Dhanda and Munjal, 2006), chlorophyll

fluorescence (Moffatt et al., 1990 and Sayed, 2003),
canopy temperature depression (Reynolds et al., 1998) and
stomatal conductance (Munjal and Rana, 2003 and Bahar
et al., 2009) provide a gain to screen wheat genotypes
under heat stress conditions. However, yield and yield
components in stress condition are still the most effective
tools for stress evaluation (Ozkan et al., 1998).

MATERIALS & METHODS
Creation of heat stress environments
The experiment was carried out in Complete Randomized
Block Design with three replications and conducted at
CCS HAU, Hisar (29°10N lat., 75°46E long., 215 m alt.).
The plot size was of single row of 2.5 m in length with the
spacing of 10 cm × 22.5 cm. In order to create heat stress
at anthesis and during reproductive stages, the sowing of
the heat stress experiment was delayed by about one and
half month from normal period of sowing i.e. at last week
of December.
Plant materials
The present investigation was carried out on 125 RILs of
bread wheat derived from the cross WH 730 (a thermo-
tolerant variety) and WH147 (a thermo-sensitive variety).
Data were recorded as the average of five competitive
plants selected randomly from each row.
Canopy temperature depression
A hand held infrared thermometer, (model AG-42, Tele
temp crop, Fullerton CA) used for instantaneous
measurement of canopy minus air temperature as canopy
temperature depression.
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Membrane thermostability
For membrane thermostability, method given by (Sullivan,
1972), modified later by Ibrahim and Quick (2001) was
followed. Membrane thermostability was measured by the
formula given below.

T1 = initial conductance value taken after incubation of
leaf discs in a controlled temperature water bath at 49°C
for 45 min followed by cooling.
T2= final conductance value taken after autoclaved at 0.01
M Pa pressure for 10 min to release all the electrolytes
from the leaf discs.
Chlorophyll fluorescence
The Chlorophyll fluorescence measurements, FO

(minimum fluorescence), Fm (maxmimum fluorescence)
and Fv/Fm (maximum quantum yield of photosystem-II)
were recorded from flag leaves using a portable handy
chlorophyll fluorescence meter (model OS-30 p, Opti
sciences, USA).

Stomatal conductance
Stomatal conductance (µmol m-2 sec-1) was measured by
using portable Infra Red Gas Analyser (IRGA): Li-Cor
6400, between 10.00 to 12.00 a.m.
Mahalonobis (1936) D2 statistic analysis was used for
assessing the genetic divergence among the RIL’s
involving phenological and yield component traits. D2

values were clustered using Tocher’s method as described
by Rao (1952).

RESULTS & DISCUSSION
The results of ANOVA for dispersion indicates that mean
sum of squares due to genotype were significant (Table 1).
This revealed that there was a considerable amount of
variability for all the characters under study among the
RILs of bread wheat. Based on the results of diversity
analysis, 125 RILs and their parents genotypes were
grouped into eleven clusters by Non-hierarchical
Euclidean Cluster Statistic in such way that the genotypes
within a cluster had a small or low D2 values than those of
in between the clusters (Table 2).

TABLE 1: Analysis of variance for dispersion in recombinant inbred lines of bread wheat
Source of
Variations

df Sum of
Squares

Mean
Squares

F Ratio Probability

Genotype 126 2.4073E17 1.9105E15 9.999E03 0.00000 **
Error 251 2.0635E-07 8.2213E-10

Total 377 2.4073E17 6.3853E14

**: Significant at 1% level of significance

TABLE 2: Classification of recombinant inbred lines of bread wheat with their parents in different clusters

Cluster
No. of
genotypes

Name of name of genotypes

I. 2 WH730   48

II. 15 4    110    112    109     64    102     70    105     65     91     98    103     80    107     75

III. 21
5     30     20     99     72     26     31     47     10     79     73     74      7     19     21 6  122
22  29  101  15

IV. 8 3     18     66      8     24     62     43     67

V. 30
9     14     83     90     53    125     44     52     51     34     46     45     39    111     77 40
42     54     55     60     95    120     94     41    127 63     89     96    126     38

VI. 9 11    123    23    113    114    117    118    119  WH147

VII. 5 33    115    116    69    104

VIII. 4 12     27    106    32

IX. 8 16    17    76    92     37    35    28    36

X. 20
25    124     97     85     87     57     78 108     93    121     61     86     49     56     59   82
68     81     71    100

XI. 5 58     84     88     13     50

TABLE 3: Average intra (diagonal) and inter (above diagonal) cluster D2 values of recombinant inbred lines of bread
wheat

Clusters I II III IV V VI VII VIII IX X XI
I 5.873 7.015 6.915 8.029 7.581 7.37 8.131 8.199 8.574 7.672 9.287
II 4.692 5.062 5.954 5.654 6.302 6.953 7.346 7.176 5.866 7.312
III 4.206 5.529 5.421 6.435 7.204 6.951 6.636 5.542 7.329
IV 4.850 6.327 7.829 8.762 8.882 8.790 7.214 9.288
V 4.952 6.191 6.886 7.283 6.435 5.539 6.542
VI 5.273 6.582 7.289 7.564 6.487 7.488
VII 5.656 7.107 6.445 6.665 7.858
VIII 5.531 6.514 7.755 8.535
IX 4.624 5.791 6.188
X 4.696 5.532
XI 4.403
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Cluster pattern revealed that, cluster V was the largest
consisting of 30 genotypes. This way followed by cluster
III (21 genotypes), cluster X (20 genotypes) , cluster II (15
genotypes), cluster VI (9 genotypes), cluster IV (8
genotypes) and cluster IX (8 genotypes), cluster VII (5
genotypes) and  cluster XI (5 genotypes), cluster VIII  (4
genotypes), cluster I (2 genotypes). The intra and inter
cluster distances are given in Table 3. A maximum
difference among the genotypes within the same cluster
was shown by cluster I (5.873). This was followed by
cluster VII (5.656), cluster VIII (5.531), cluster VI (5.73),
cluster V (4.952), cluster IV (4.850), clusters X (4.696),
cluster II (4.692), clusters IX (4.624), clusters XI (4.403).
When diversity within clusters was studied, it showed a
range of 5.062 to 9.288. Cluster IV and XI showed
maximum inter cluster distance of 9.288, followed by that
between clusters I and XI (9.287). The lowest inter cluster
distance was noticed between clusters III and II (5.062),
followed by that between clusters V and III (5.421).
It was evident that grain yield per plant was the highest in
cluster-XI (13.933) and lowest in cluster-IV (3.6089)
(Table 4). Canopy temperature depression exhibited
highest mean value in cluster VII (7.458) and lowest mean
value in cluster I (5.11). The mean value of membrane

thermostability varies from 76.063 in cluster XI to 55.321
in cluster I. The cluster I (0.759) and cluster VII (0.629)
showed the highest and lowest mean values for Fv/ Fm.
For stomatal conductance cluster II (0.42) revealed the
maximum mean value and cluster VII (0.243) minimum
mean value. Overall cluster XI had the highest mean value
for six characters. Therefore, cluster XI was considered
most desirable for selecting genotypes. While the
genotypes of the cluster VI have highest spike length,
along with earliest in days to 50% flowering. The
genotypes of cluster VI could be crossed with the
genotypes of cluster XI for getting desirable transgressive
segregants and high heterotic response. As for degree of
contribution of each character to divergence (Table 5),
plant height (ranked first, 2814 times out of 8001 total
number of combinations) contributed 35.17% to
divergence of genotypes. This was followed by membrane
thermostability (27.18%), stomatal conductance (15.24%),
days to heading (8.72%) and canopy temperature
depression (3.85%). The minimum contribution toward
total diversity was by grain weight per spike and Fo. Each
of them contributed 0.02% of diversity. The above results
were supported by Nimbalkar et al. (2002) and Chapla et
al. (2011).

TABLE 5: Percent contribution of different traits towards total diversity
Sr no. Source Times Ranked 1st Contribution %

1. Grain yield  per plant 9 0.11

2. No. of tillers per plant 105 1.31

3. No. of grains per plant 230 2.87

4. 100-grain weight 79 0.99

5. Grain weight per spike 2 0.02

6. No. of grains per spike 175 2.19

7. Spike length 67 0.84

8. No. of spikelets per spike 32 0.40

9. Biomass 23 0.29

10. Plant height 2814 35.17

11. Harvest index 3 0.04

12. Days to heading 698 8.72

13. Days to maturity 48 0.60

14. Canopy temperature depression 308 3.85

15. Membrane thermostability 2175 27.18

16. Fv/ Fm 4 0.05

17. Fo 2 0.02

18. Fm 8 0.10

19. Stomatal conductance 1219 15.24

There are several reports about the existence of genetic
diversity for heat tolerance in conventional wheat varieties
(Gibson and Paulsen, 1999; Zhao et al., 2008). Exploring
new sources of genetic diversity must be continued.
Expansion of genetic variability, in the wheat gene pool,
aimed to improve heat tolerance, can be done by cross-
breed wheat and genetic variability for heat tolerance
amongst breeding lines can be identified. The
transgressive segregants coming out of such crossing
programme would be better adapted to heat stressed
condition and careful selection is followed for trait

specific and condition suited approach is implemented to
make yield improvement in wheat for such conditions.
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