QUANTITATIVE ESTIMATION OF REDUCING SUGAR BY ACID HYDROLYSIS OF SAPOTA (MANILKARA ACHRAS) PEELS BY STANDARD METHODS

${ }^{1}$ Venkatesh, R., ${ }^{2}$ Krushna Yadav, D.K. \& ${ }^{1}$ Chandraju, S.
1^{*} Department of Studies in Sugar Technology, Sir M. Vishweshwaraya Post-graduate Center, University of Mysore, Tubinakere, Mandya-571402, Karnataka, India
${ }^{2}$ Department of Food science and Nutrition, University of Agricultural Sciences, GKVK, Bengaluru-560065

Abstract

Sapota is a wonderful gift by the nature commonly called as chickoo, it having a combined flavour of brown and beat sugar. It has a short shelf life fruit but having several medicinal properties due to the presence of polyphenols, ascorbic acid, etc. sapota has been part of human diet but while consumption of these fruit some of them are through outer skin it may leads to environmental pollution. Sapota (Manilkara achras) is polysaccharide source that can be converted in to reducing sugar. In a temperature of $75^{\circ} \mathrm{C}$ it can be hydrolyzed using sulphuric acid. It was observed that the degradation has significant effect with respect by varying time (60,90 minutes) and concentration of (Sulphuric acid and Hydrochloric acid). In turn sugar yield is around 40-50\%, each which is estimated by Bertrand's, Benedict's, and Lane-Eynon methods.

KEY WORDS: Degradation, polysaccharides, reducing sugar.

INTRODUCTION

Sapota, it is native of Mexico and Central America and scientifically called as Manilkera zapota is one of the plants belongs to the family sapotaceae. It includes about 800 species of evergreen trees and shrubs in around 65 genera (Parle milind et al., 2015). Sapota is highly productive and generally free from major pests (Gopi et al., 2015). Maharashtra and south Gujarat was major sapota cultivated and marketed to different parts of the country. It is highly perishable can be spoiled within five days due to degradative metabolism. The shelf life can be increased by stored at low temperature (Patel et al., 2010).

MATERIALS \& METHODS

The hydrolysis of Sapota (Manilkera zapota) peels was carried out at constant stirring using 2 M sulphuric acid in a hot plate equipped with a temperature controller, and continuously shaken during the operation. Initially measured volume of water, sulphuric acid or hydrochloric acid with 1 gm Sapota peel were put into the beaker and kept under hot plate as well as the temperature controller was adjusted such that the temperature (Isothermal), but before that temperature was achieved, reaction has occurred. The hydrolyzed was neutralized to bring the pH 7, the addition of calcium carbonate to neutralize the excess chlorides and precipitated as lead chlorides and activated carbon, followed by filtration. The concentration of reducing sugar was analysed by Bertrand's Benedict's and Lane-eynon standard procedures (Chandraju et al., 2013, 2014). By varying the concentration of 2 M sulphuric acid and 2 M hydrochloric acid, where time 60 minutes and temperature $75^{\circ} \mathrm{C}$ are kept constant.
By varying the time 60 , 90 minutes respectively keeping temperature $75^{\circ} \mathrm{C}$ and concentration at the ratio of 2 M sulphuric acid and 2 M hydrochloric acid $(15 \mathrm{ml}) / 100 \mathrm{~mL}$
distilled water as constant, the quantitative values are tabulated (Tables 2-5) and their values are plotted in the following (Figures 1-4), beyond the mentioned concentration and heating time limit charring occurs (Chandraju et al., 2014)
From all the above values it is clear that the value does not differ much. After all the analysis the maximum reducing sugar value runs to $40-50 \%$ on the whole. There is no absurd difference in the yield to sugars when there is a change of acid weather it is either sulphuric acid or hydrochloric acid.
(i) Bertrand's method is based on the reducing action of sugar on the alkaline solution of tartarate complex with cupric ion; the cuprous oxide formed is dissolved in warm acid solution of ferric alum. The ferric alum is reduced to FeSO_{4} which is titrated against standardized $\mathrm{KMnO}_{4} ; \mathrm{Cu}$ equivalence is correlated with the table to get the amount of reducing sugar. This is based on the alkaline solution of tartarate complex of cupric ion.
(ii) In Lane-Eynon method, sugar solution is taken in the burette and known volume of Fehling solution is taken in conical flask. This is titrated at a temperature 65$70^{\circ} \mathrm{C}$. Titration is continued till it acquires a very faint blue color. At this stage 3 drops of methylene blue indicator is added. The dye is reduced to a colorless compound immediately and the end point is changing of color from blue to red. In this method it is susceptible for interference from other type of molecules that act as reducing agent.
(iii) In Benedict's method pipette out Benedict's quantitative reagent in to a clean conical flask. The contents were heated to a temperature of $65-70^{\circ} \mathrm{C}$. Then it is titrated against unknown sample solution till the appearance of chalky white precipitate. a visual clear end point which turns blue to white by using
potassium thiocyanate which converts the red cuprous oxide to white crystals of cuprous thiocyanate; it helps in visual view (Sausen Silmi et al., 1997)

RESULTS \& DISCUSSION

At constant temperature $\left(75^{\circ} \mathrm{C}\right)$, by varying the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{M}, 0.3 \mathrm{M}$ and 0.5 M$)$ The reducing sugar estimated by different method, Bertrand's method ($0.2162,0.4132$, and 0.5049 g) Benedict's method ($0.2642,0.4653$ and 0.5239 g) and Lane-Eynon method ($0.2971,0.4897$ and 0.5643 g). At various time intervals
(60 mim , and 90 min).from Bertrand's method (0.4123 , 0.4431 g), Benedict's method ($0.4146,0.4268 \mathrm{~g}$) and LaneEynon method ($0.4139,0.4536 \mathrm{~g}$) and in the same way by varying concentration of HCL from Bertrand's method ($0.4321,0.4631$, and 0.4982 g), Benedict's method ($0.4421,0.4712$, and 0.5082 g), and Lane-Eynon method ($0.4362,0.4566$ and 0.5163 g) At various time intervals (60 mim , and 90 min). From Bertrand's method (0.4102 , 0.4142 g), Benedict's method ($0.3998,0.4232 \mathrm{~g}$), and Lane-Eynon method ($0.3987,0.4132 \mathrm{~g}$) respectively.

Amount of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} / 100 \mathrm{~mL}$ Distilled water	Amount of 2 M Distilled water	$\mathrm{HCl} / 100 \mathrm{~mL}$
$5 \mathrm{~mL}(0.1 \mathrm{M})$	$5 \mathrm{~mL}(0.1 \mathrm{M})$	
$15 \mathrm{~mL}(0.3 \mathrm{M})$	$15 \mathrm{~mL}(0.3 \mathrm{M})$	
$25 \mathrm{~mL}(0.5 \mathrm{M})$	$25 \mathrm{~mL}(0.5 \mathrm{M})$	

TABLE 1: Sapota sample: concentration of strong acids chosen and monitored

Sl.No	Amount of 2M H ${ }_{2} \mathrm{SO}_{4} /$ 100mL Distilled water	Bertrand's method (g)	Benedict's method (g)	Lane-Eynon method (g)
1	$5 \mathrm{~mL}(0.1 \mathrm{M})$	0.2162	0.2642	0.2971
2	$15 \mathrm{~mL}(0.3 \mathrm{M})$	0.4132	0.4653	0.4897
3	$25 \mathrm{~mL}(0.5 \mathrm{M})$	0.5049	0.5239	0.5643

TABLE 2: Heating time is kept constant [1h] while concentration of sulphuric acid is varied

Sl.No	Heating time(Hr. $)$	Bertrand's method (g)	Benedict's method (g)	Lane-Eynon Method (g)
1	1	0.4123	0.4146	0.4139
2	$1: 30$	0.4431	0.4268	0.4536

TABLE 3: Concentration is kept constant (15 ml of 2 M sulphuric acid taken per 100 ml distilled water) while time period of heating is varied.

Sl.No	Amount of 2M HCl/100mL Distilled water	Bertrand's method (g)	Benedict's method (g)	Lane-eynon method (g)
1	$5 \mathrm{~mL}(0.1 \mathrm{M})$	0.4321	0.4421	0.4362
2	$15 \mathrm{~mL}(0.3 \mathrm{M})$	0.4631	0.4712	0.4566
3	$25 \mathrm{~mL}(0.5 \mathrm{M})$	0.4982	0.5082	0.5163

TABLE 4: Heating time is kept constant ($1 \mathrm{hr)} \mathrm{while} \mathrm{concentration} \mathrm{of} \mathrm{hydrochloric} \mathrm{acid} \mathrm{is} \mathrm{varied}$

Sl. No	Heating (Hr).	time	Bertrand's method (g)	Benedict's method (g)	Lane-Eynon method (g)
1	1	0.4102	0.3998	0.3987	
2	$1: 30$	0.4142	0.4232	0.4132	

TABLE 5. Concentration is kept constant (15 ml of 2 m hydrochloric acid taken $/ 100 \mathrm{ml}$ distilled water) while time period of heating is varied

FIGURE 1: Estimation of reducing sugar by varying $\mathrm{H}_{2} \mathrm{SO}_{4}$

FIGURE 2. Estimation of reducing sugar by variation of heating time $\mathrm{H}_{2} \mathrm{SO}_{4}$ Constant

FIGURE 3. Estimation of Reducing sugar by varying HCL

FIGURE 4. Estimation of Reducing sugar by variation of heating time HCL Constant

CONCLUSION

Sapota peels are polysaccharide is hydrolyzed enzymatically. In the present work, the mimicking conversion is exhibited through a simple acid hydrolysis process by the application of various acids like $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl under two conditions one is by varying the concentration of acid at constant temperature and time of heating. Another one is by varying the time of heating at constant concentration and temperature the amount of reducing sugars are monitored and the yield percent also
runs up to $40-50 \%$ which is authentically reported by analytical standard procedure in a cost effective manner.

ACKNOWLEDGEMENT

The authors thanks to Department of Sugar technology. Sir. M.V. Post Graduate Centre, University of Mysore, Mandya and University Grants Commission (UGC) Delhi, for financial support.

REFERENCES

Gopu, B., Balamohan, T.N. (2015) Canopy management in sapota(Acchras sapota L), Agricultural Sciences.4(7) 52-53.

SausenSilmi, Canarsie, H.S. (1997) Summer Research Programme for Teachers, Determining the Concentration of Solution, Beer's Law. 2(1) 1-5

Badger, P.C. (2002) Trends in New Crops and New Uses. ASHS Press Alexandria. 17-21.

Parle millind, Preethi (2015) Chickoo: A wonderful gift from nature, International journal of research in ayurveda and pharmacy, 6(1):544-550.

Patel, R.G., Parmar, B.R. \& Patel, S.J. (2010) A study on biochemical changes of sapota vrieties in cold storage with application of GA_{3}. The Asian journal of horticulture, 5(1) 127-130.

Chandraju, S., Venkatesh, R., Chidan Kumar, C. S. (2013) Estimation of reducing sugar by acid hydrolysis of Sorghum husk by Standard method Journal of chemical and pharmaceutical research. 5 (12) 1272-75.

Chandraju, S., Venkatesh, R., Chidan Kumar, C. S. (2014) Estimation of reducing sugar by acid hydrolysis of Cardamom (Elittreia Cardamom) husk by Standard methods World journal of pharmaceutical sciences.2(8) 857-59.

Chandraju, S., Venkatesh, R., Patel, S.J. (2014) Estimation of reducing sugar by acid hydrolysis of Black grape (Vitius vinifera L.) by Standard method Journal of chemical and pharmaceutical research.6(5) 862-66.

Chandraju, S., Venkatesh, R., Chidan Kumar, C. S. (2014) Estimation of reducing sugar by acid hydrolysis of Pumpkin (Cucurbitaceae) peels by Standard methods. International Journal of pharmacy and integrated life Sciences. 2 (19) 32-38.

Chandraju, S., Venkatesh, R., Chidan Kumar C. S. (2014) Estimation of reducingsugar by acid hydrolysis of Pomegranate (Punica granatum) peels by Standard method World journal of Pharmacy and Pharmaceutical sciences, 3 (3) 2222-29.

Chandraju, S. Venkatesh, R., Chidan Kumar C.S. (2014) Estimation of reducing sugar by acid hydrolysis of Banana (Musasapientum) peels by Standard methods International Journal of pharmacy and integrated life Sciences, 2(19) 1-9.

Chandraju, S., Venkatesh, R. Chidan Kumar, C.S. (2014) Novel spectrophotometric Technique for the estimation of reducing sugar from orange (Citrus sinensis L) Peels international journal of recent scientific research, 1(5) 5559.

