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ABSTRACT 

In this paper, an eco-epidemiological system which considers a prey–predator system and (SI) disease with harvesting, using  

Holling type II as a functional response for the susceptible predator , linear functional response for the infected predator and 

the harvesting effect on the infectious population.  Bifurcation such as (saddle node, transcritical and pitchfork) of the 

proposed system is investigated by using Sotomayrs theory and Hopf bifurcation theory; it’s observed that there is 

transcritical bifurcation near axial equilibrium point ,the predator-free equilibrium point ,the disease-free equilibrium point 

,the infected-predator-free equilibrium point and the infected-prey-free equilibrium point while there is a saddle–node 

bifurcation near coexistence equilibrium point, on the other hand there is no pitchfork bifurcation near all of these equilibrium 

points. Further investigations for the Hopf bifurcation near coexistence equilibrium point are carried out. Finally, numerical 

simulations are used to illustration the occurrence of local bifurcation of this system. 
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INTRODUCTION  

From the see of human needs, the utilization of biological 

resources and harvest of population are commonly 

practiced in prey-predator systems. But then, unreasonable 

exploitation of biological resources might lead to 

unfavorable influence on ecological balance. So there has 

been rapidly growing interest in the analysis and modeling 

of predator–prey systems. Many author[7–9] have studied the 

dynamics of prey-predator models with harvesting and 

disease, and obtained complex dynamic behaviors, such as 

Hopf bifurcation or periodic solution. However, they have 

not considered the effect of the harvest effort on ecosystem 

from an economic perspective or environmental[6]. In any 

case the continuous dynamical systems are usually 

composed from a set of the ordinary differential equations 

or a set of partial differential equations as well as a set of 

different parameters that control the nature of the system. 

The solution of these equations depends entirely on these 

parameters. These systems describe a problem in the 

medical, engineering, environmental or economic. Any 

simple or smooth change in any parameter present in the 

system may result in sudden change or topological change 

in its behavior, changing the nature of the system from 

stable to unstable or periodic or converse. Then this model 

(system) is said to be has a   bifurcation.  the bifurcation 

object is not exist only the subject of dynamical systems, it 

is found in various fields, for example, found in medicine, 

geometry, etc.  Where the term was first introduced by the 

scientific Henri Poincaré Carré in 1885. The usefulness of 

bifurcation theory transcends our ability to cite theorems. 

By furnishing a qualitative modeling mechanism, it 

provides a conceptual framework within which we can view 

a number of important ecological processes. It is useful to 

divide bifurcations into two principal classes: local 

bifurcations, which can be analyzed entirely through 

changes in the local stability properties of equilibrium, 

periodic orbits or other invariant sets as parameters cross 

through critical thresholds and examples of local 

bifurcations include: saddle-node (fold) bifurcation, 

transcritical bifurcation, pitchfork bifurcation, period-

doubling bifurcation and Hopf bifurcation; and global 

bifurcations, which often occur when larger invariant sets 

of the system  with each other, or with equilibrium of the 

system. They cannot be detected purely by a stability 

analysis of the equilibria (fixed points). This causes changes 

in the topology of the trajectories in phase space which 

cannot be confined to a small neighborhood, as is the case 

with local bifurcations[6]. The term Hopf bifurcation (also 

sometimes called Poincar´e-Andronov-Hopf bifurcation) 

refers to exist or not exist a periodic solution from 

equilibrium as a parameter crosses a critical value. It is the 

simplest bifurcation not just involving equilibrium and 

therefore belongs to what is sometimes called dynamic 

bifurcation theory. In a differential equation a Hopf 

bifurcation typically occurs when a complex conjugate pair 

of eigenvalues of the linear flow at a fixed point becomes 

purely imaginary. This implies that a Hopf bifurcation can 

only occur in systems of dimension two or higher. The 

subject of the bifurcation and in particular Hopf is a very 

important subject in applied mathematics. Recently, Tayeh 

and Naji[5] had studied local bifurcation such as (saddle-

node, transcritical and pitchfork) and Hopf bifurcation 

around each of the equilibrium points of prey predator 

model involving SI infection disease in both the prey and 

predator species and the disease transmitted by contact 

only. Khalaf ,Majeed and Naji[11] established the conditions 

of the occurrence of local bifurcation such as (saddle-node, 

transcritical and pitchfork) with particular emphasis on the 

Hopf bifurcation near the positive equilibrium point of 

prey-predator model involving SIS infectious disease in 

prey population this disease passed from a prey to predator 

through attacking of predator to prey and the disease 
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transmitted within the same species by contact and external 

source. 

In this paper, an application of Sotomayor’s theorem [2,3] for 

local bifurcation is used to study the occurrence of local 

bifurcation near the equilibrium, furthermore  the condition  

of occurrence of the Hopf  bifurcation near positive 

equilibrium point are established of a mathematical model 

proposed by Majeed and Ali [4]. 

Model Formulation [4] 

An eco-epidemiological mathematical model consisting of 

prey-predator model involving SI infectious disease with 

harvesting in infected population is proposed and analyzed 

in [4]. 

 
𝑑𝑠

𝑑𝑇
= 𝑟𝑠 (1 −

𝑠 + 𝐼

𝑘
) − 𝛽1𝑆𝐼 −

𝑎1𝑆𝑋

𝑏 + 𝑆
 

𝑑𝐼

𝑑𝑇
= 𝛽1𝑆𝐼 − 𝑎2𝐼𝑋 − 𝑎3𝐼𝑌 − 𝑑1𝐼 − ℎ1𝐼                                                  (2.1) 

𝑑𝑋

𝑑𝑇
= 𝑒1

𝑎1𝑆𝑋

𝑏 + 𝑆
+ 𝑒2𝑎2𝐼𝑋 − 𝛽2𝑋𝑌 − 𝑑2𝑋 

𝑑𝑌

𝑑𝑇
= 𝛽2𝑋𝑌 + 𝑒3𝑎3𝐼𝑌 − (𝑑2 + 𝛼)𝑌 − ℎ2𝑌. 

 

Where 0<𝑒𝑖< 1; i = 1,2,3 represent the conversion rate 

constants and 𝛽1 represents the infection rate of susceptible 

prey, 𝛽2 represents the infection rate of susceptible 

predator.  Note that, there is an SI epidemic disease in prey 

population divides the prey population into two classes 

namely S(T) that represents the density of susceptible prey 

species at time T and I(T) which represents the density of 

infected prey species at time T, and  there is different 

disease  divides the predator population  into two classes 

namely  X(T) that  represents the density of susceptible 

predator species at time T and Y(t) that represents the 

density of infected predator species at time T . Therefore at 

any time T, we have N (T) = S (T) + I (T) and 

P(T)=X(T)+Y(T) , the diseases are not  transmitted from 

prey to predator or converse , but it are transmitted in the 

same species all the parameters are moreover assumed to be 

positive and described as given in[4]. 

 

Now, for further simplification of the system (2.1), the following dimensionless variables are used in [4].  

 

𝑡 = 𝑟 𝑇 , 𝑥 =
𝑆

𝑘
  , 𝑦 =

𝐼

𝑘
   , 𝑧 =

𝑋

𝑘
 , 𝑤 =

𝑌

𝑘
. 

Then system (2.1) can be written in the following dimensionless form: 

 
𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥 − 𝑦 − 𝑐1𝑦 −

𝑐2𝑧

𝑐3 + 𝑥
) = 𝑓1(𝑥, 𝑦, 𝑧, 𝑤) 

𝑑𝑦

𝑑𝑡
= 𝑦(𝑐1𝑥 − 𝑐4𝑧 − 𝑐5𝑤 − (𝑐6 + 𝑐7)) = 𝑓2(𝑥, 𝑦, 𝑧, 𝑤)                               (2.2) 

𝑑𝑧

𝑑𝑡
= 𝑧 (

𝑐8𝑥

𝑐3 + 𝑥
+ 𝑐9𝑦 − 𝑐10𝑤 − 𝑐11) = 𝑓3(𝑥, 𝑦, 𝑧, 𝑤) 

𝑑𝑤

𝑑𝑡
= 𝑤(𝑐10𝑧 + 𝑐12𝑦 − (𝑐11 + 𝑐13 + 𝑐14)) = 𝑓4(𝑥, 𝑦, 𝑧, 𝑤) 

where  

𝑐1 =
𝛽1𝑘

𝑟
 , 𝑐2 =

𝑎1

𝑟
 , 𝑐3 =

𝑏

𝑘
 , 𝑐4 =

𝑎2𝑘

𝑟
 , 𝑐5 =

𝑎3𝑘

𝑟
 , 𝑐6 =

𝑑1

𝑟
 , 𝑐7 =

ℎ1

𝑟
 , 𝑐8 =

𝑒1𝑎1

𝑟
 , 

𝑐9 =
𝑒2𝑎2𝑘

𝑟
 , 𝑐10 =

𝛽2𝑘

𝑟
 , 𝑐11 =

𝑑2

𝑟
 , 𝑐12 =

𝑒3𝑎3𝑘

𝑟
 , 𝑐13 =

𝛼

𝑟
, 𝑐14 =

ℎ2

𝑟
 .  

With  𝑥(0) ≥0 ,𝑦(0) ≥ 0, 𝑧(0) ≥ 0 and 𝑤(0) ≥ 0. 
 

Represent the dimensionless parameter of system (2.2). It is observed that the   number of   parameters have   been   reduced   

from sixteen   in the system (2.1) to fourteen in the system (2.2).  

It is easy to verify that all the interaction functions  f1, f2, f3  and  f4 on the right hand side of system (2.2) are continuous and 

have continuous partial derivatives on 𝑅+
4  with respect to dependent variables  𝑥 , 𝑦 , 𝑧 and  𝑤. Accordingly they are 

Lipschitzian functions and hence system (2.2) has a unique solution for each non-negative initial condition. Further the 

boundedness of the system is shown in the following theorem. 

Theorem (2.1)[4]: All the solutions of system ( 2.2 ) which initiate in R+
4  are uniformly bounded. 

 

Local bifurcation analysis: 

In this section, the effect of varying the parameter values on the dynamical behavior of the system (2.2) around each 

equilibrium points is studied. Recall that the existence of non- hyperbolic equilibrium point of system (2.2) is the necessary 

but not sufficient condition for bifurcation to occur. Therefore, in the following theorems an application to the Sotomayor's 

theorem is appropriate. 



I.J.S.N., VOL.8 (3) 2017: 565-582    ISSN 2229 – 6441 

567 

Now, according to Jacobian matrix of system (2.2) given in [4], it is clear to verify   that   for   any   non - zero vector V =
(v1, v2, v3, v4)

𝑇 we have: 

 

𝐷2𝐹(𝑋, 𝜇)(V , V) =

[
 
 
 
 
 −2 v1 ( v1 −

𝑐3𝑐2𝑧

𝑅3
v1 + (1 + 𝑐1)v2 +

𝑐3𝑐2

𝑅2
v3 )

2 v2 ( 𝑐1v1 − 𝑐4v3 − c5v4)

 (−
2𝑐3𝑐8𝑧

𝑅3
v1

2 +
2𝑐3𝑐8

𝑅2
v1v3 + 2𝑐9v2v3 − 2𝑐10v3v4)

2 v4 ( 𝑐12v2 + 𝑐10v3) ]
 
 
 
 
 

,                                               (3.1) 

and    

 

𝐷3𝐹(𝑋, 𝜇)(V , V) =

[
 
 
 
 
 −

6𝑐2𝑐3𝑧

𝑅4
𝑣1

3 +
6𝑐2𝑐3

𝑅3
𝑣3𝑣1

2

0
6𝑐3𝑐8𝑧

𝑅4
𝑣1

3 −
6𝑐3𝑐8

𝑅3
𝑣3𝑣1

2

0 ]
 
 
 
 
 

 ,                                                                   (3.2) 

where 𝑅 = (𝑥 + 𝑐3)  and 𝑋 = (𝑥, 𝑦, 𝑧, 𝑤)  , 𝜇 be any bifurcation parameter. 

In the following theorems the local bifurcation conditions near equilibrium points are established. 

 

Theorem (3.1): 

System (2.2) at the equilibrium point  𝐸1 = (1 ,0 ,0 ,0 )  with the parameter    𝑐11 = 𝑐̂11 =
𝑐8

𝑅̂
  where 𝑅̂ = (1 + 𝑐3)  has: 

 No saddle –node bifurcation. 

 Transcritical bifurcation . 

 No pitch fork bifurcation. 

 

Proof: According to the Jacobian matrix  𝐽1 given in[4] the system (2.2)  at  the  equilibrium  point  𝐸1  has  zero  eigenvalue 

(say 𝜆1𝑧 = 0) at   𝑐11 = 𝑐̂11 , it is clear that  𝑐̂11 > 0  , and the Jacobian matrix  𝐽1 with  𝑐11 = 𝑐̂11  becomes: 

𝐽1 = 𝐽1(𝜆1𝑧 = 0) =

[
 
 
 
 
 −1 −(1 + 𝑐1) −

𝑐2

𝑅̂ 
0

0 𝑐1 − (𝑐6 + 𝑐7) 0 0

0 0 0 0

0 0 0 −(𝑐̂11 + 𝑐13 + 𝑐14)]
 
 
 
 
 

 

Now, let   V[1] = (v1
[1]

 , v2
[1]

 , v3
[1]

 , v4
[1]

)
𝑇

 be the eigenvector corresponding to the eigenvalue  𝜆1z = 0. Thus (𝐽1 −

𝜆1z𝐼)V
[1] = 0, which gives: 

 

v1
[1]

=
−𝑐2

𝑅̂
v3

[1]
,       v2

[1]
=  v4

[1]
= 0 

and  v3
[1]

 is any nonzero real number. Let  𝐵[1] = (𝑏1
[1]

 , 𝑏2
[1]

 , 𝑏3
[1]

 , 𝑏4
[1]

)
𝑇

 be the eigenvector associated with the 

eigenvalue     𝜆1z = 0     of    the   matrix  𝐽1
T  .  Then we have, ( 𝐽1

T − 𝜆1z𝐼)𝐵
[1] = 0 . By solving this equation for  𝐵[1] we 

obtain, 𝐵[1] = (0 , 0 , b3
[1]

 , 0)
𝑇

, where  𝑏3
[1]

 is any nonzero real number. Now, consider: 

𝜕𝑓

𝜕𝑐11

= 𝑓𝑐11
(𝑋 , 𝑐11) = (

𝜕𝑓1
𝜕𝑐11

,
𝜕𝑓2

𝜕𝑐11

,
𝜕𝑓3

𝜕𝑐11

,
𝜕𝑓4
𝜕𝑐11

)
𝑇

= (0 , 0 , −𝑧, −𝑤)𝑇  . 

So,  𝑓𝑐11
(𝐸1 , 𝑐̂11) = (0 , 0 , 0 , 0)𝑇 and hence (𝐵[1])

𝑇
𝑓𝑐11

(𝐸1, 𝑐̂11) = 0  . 

Therefore, by using Sotomayor’s theorem the saddle-node bifurcation condition can not satisfy. While the first condition of 

transcritical bifurcation is satisfied, as below, since 

 

𝐷𝑓c11
(𝑋 , c11) =  

[
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1]
 
 
 
 

 ,  

 

where  𝐷𝑓c11
(𝑋 , c11)  represents the derivative of  𝑓c11

(𝑋 , c11) with respect to 𝑋 = (𝑥 , y , z, 𝑤)𝑇 .Further ,it is observed that  

 



Prey-predator model with harvesting involving diseases in both populations 

568 

𝐷𝑓c11
( 𝐸1 , 𝑐̂11)𝑉

[1] =

[
 
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0  0 −1]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 −

𝑐2

𝑅̂
𝑣3

[1]

0

𝑣3
[1]

0 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

0

0

−𝑣3
[1]

0 ]
 
 
 
 
 
 

 

(𝐵[1])
𝑇
[𝐷𝑓𝑐11

(𝐸1 , 𝑐̂11)V
[1]] = (0 , 0 , 𝑏3

[1]
 , 0)(0 ,0 , −𝑣3

[1]
 ,0)

𝑇

= −v3
[1]

𝑏3
[1]

≠ 0 

Moreover, by substituting  V[1] in (3.1) we get: 

 

𝐷2𝑓(𝐸1 , 𝑐̂11)(V
[1] , V[1]) =

[
 
 
 
 
 
 
 
 
 
−2(

c2v3
[1]

𝑅̂ 
)

2

+
2𝑐3𝑐2

2

𝑅̂3
(v3

[1]
)

2

 

0

−
2𝑐2𝑐3𝑐8

𝑅̂3 
(v3

[1]
)

2

0 ]
 
 
 
 
 
 
 
 
 

    

Hence, it is obtain that: 

(𝐵[1])
𝑇
[𝐷2𝑓(𝐸1, 𝑐̂11)(V

[1] , V[1])] = −
2𝑐2𝑐3𝑐8

𝑅̂3 
𝑏3

[1]
(v3

[1]
)

2

≠ 0 

Thus, by using Sotomayor’s theorem system  (2.2)  has transcritical bifurcation at  𝐸1 with the parameter  𝑐11 = 𝑐̂11  , and no 

pitch fork bifurcation can occurs at 𝑐11 = 𝑐̂11           ∎ 

 

Theorem (3.2): Suppose that the following condition  

𝑐12𝑦̅ > (𝑐13 + 𝑐14)                                                                                                            (3.2𝑎) 

is satisfied. Then system (2.2) at the equilibrium point  𝐸2 = ( 𝑥̅, 𝑦̅ ,0 ,0 )  with the parameter    𝑐11 = 𝑐1̅1 = 𝑐12𝑦̅ − (𝑐13 +
𝑐14) has: 

 No saddle –node bifurcation. 

 Transcritical bifurcation. 

 No pitch fork bifurcation   

 

Proof: According to the Jacobian matrix  𝐽2 given in[4] the system (2.2) at the equilibrium point 𝐸2 has zero eigenvalue (say 

𝜆2𝑤 = 0) at  𝑐11 = 𝑐1̅1  , it is clear that 𝑐1̅1  > 0  provided that the condition (3.2𝑎) holds, and the Jacobian matrix  𝐽2 with 

 𝑐11 = 𝑐1̅1  becomes:  

 

𝐽2̅ = 𝐽2(𝑐1̅1) = [𝑘̅𝑖𝑗]4×4
 

where  𝑘̅𝑖𝑗 = 𝑘𝑖𝑗  for all  𝑖, 𝑗 = 1,2,3,4   except  𝑘̅44 = 0. 

Now, let   V[2] = (v1
[2]

 , v2
[2]

 , v3
[2]

 , v4
[2]

)
𝑇

 be the eigenvector corresponding to the eigenvalue  𝜆2w = 0. Thus (𝐽2̅ −

𝜆2w𝐼)V[2] = 0, which gives: 

 

v1
[2]

=
𝑐5

𝑐1

v4
[2]

   , v2
[2]

= −
𝑐5v4

[2]

𝑐1(𝑐1 + 1)
,   𝑣3

[2]
= 0,       

 

and  v4
[2]

 is any nonzero real number. Let  𝐵[2] = (𝑏1
[2]

 , 𝑏2
[2]

 , 𝑏3
[2]

 , 𝑏4
[2]

)
𝑇

 be the eigenvector associated with the 

eigenvalue     𝜆2w = 0     of    the   matrix  𝐽2̅
𝑇  .  Then we have, (𝐽2̅

𝑇 − 𝜆2w𝐼)𝐵[2] = 0 . By solving this equation for  𝐵[2] we 

obtain, 𝐵[2] = (0 , 0 , 0 , b4
[2]

)
𝑇

, where  𝑏4
[2]

 is any nonzero real number. Now, consider: 

𝜕𝑓

𝜕𝑐11

= 𝑓𝑐11
(𝑋 , 𝑐11) = (

𝜕𝑓1
𝜕𝑐11

,
𝜕𝑓2

𝜕𝑐11

,
𝜕𝑓3

𝜕𝑐11

,
𝜕𝑓4
𝜕𝑐11

)
𝑇

= (0 , 0 , −𝑧, −𝑤)𝑇  . 

 

So,  𝑓𝑐11
(𝐸2 , 𝑐1̅1) = (0 , 0 , 0 , 0)𝑇 and hence (𝐵[2])

𝑇
𝑓𝑐11

(𝐸2, 𝑐1̅1) = 0  . 

 

Therefore, by using Sotomayor’s theorem the saddle-node bifurcation condition can not satisfy. While the first condition of 

transcritical bifurcation is satisfied. Now, since 
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𝐷𝑓c11
(𝑋 , c11) =  

[
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1]
 
 
 
 

   

 

where  𝐷𝑓c11
(𝑋 , 𝑐1̅1)  represents the derivative of  𝑓c11

(𝑋 , 𝑐1̅1) with respect to 𝑋 = (𝑥 , y , z, 𝑤)𝑇 .Further ,it is observed 

that 

𝐷𝑓c11
( 𝐸2 , 𝑐1̅1)𝑉

[2] =

[
 
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0  0 −1]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

c5

c1

v4
[2]

−
𝑐5v4

[2]

𝑐1(𝑐1 + 1)

0

v4
[2]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

0

0

0

−v4
[2]

]
 
 
 
 
 
 

 

 

(𝐵[2])
𝑇
[𝐷𝑓𝑐11

(𝐸2 , 𝑐1̅1)V
[2]] = (0 , 0 , 0 , b4

[2]
)(0 ,0 ,0 , −v4

[2]
)

𝑇

= −v4
[2]

b4
[2]

≠ 0 

Moreover, by substituting  V[2] in (3.1) we get: 

𝐷2𝑓(𝐸2 , 𝑐1̅1)(V
[2] , V[2]) =

[
 
 
 
 
 
 
 
 
 −

2𝑐5

𝑐1

(𝑣4
[2]

)
2

(
𝑐5

𝑐1

− (1 + 𝑐1).
𝑐5

𝑐1(𝑐1 + 1)
 )

−2
𝑐5

𝑐1(𝑐1 + 1)
(𝑣4

[2]
)

2

(
𝑐1𝑐5

𝑐1

− 𝑐5)

0

−2
𝑐5𝑐12

𝑐1(1 + 𝑐1)
 (v4

[2]
)

2

 
]
 
 
 
 
 
 
 
 
 

 

 

=

[
 
 
 
 
 
 
 
 

0 

0

0

−2
𝑐5𝑐12

𝑐1(1 + 𝑐1)
 (v4

[2]
)

2

 
]
 
 
 
 
 
 
 
 

. 

Hence, it is obtain that: 

(𝐵[2])
𝑇
[𝐷2𝑓(𝐸2 , 𝑐1̅1)(V

[2] , V[2])] = −2
𝑐5𝑐12

𝑐1(1 + 𝑐1)
 (v4

[2]
)

2

𝑏4
[2]

≠ 0 

 

Thus, by using Sotomayor’s theorem system  (2.2)  has transcritical bifurcation at  𝐸2 with the parameter  𝑐11 = 𝑐1̅1  , and no 

pitch fork bifurcation can occurs at 𝑐11 = 𝑐1̅1          ∎ 

 

Theorem (3.3): Suppose that the following condition 

𝑐10𝑧̇ > (𝑐13 + 𝑐14)                                                                                                            (3.3𝑎) 

is satisfied. Then system (2.2) at the equilibrium point  𝐸3 = (𝑥̇, 0, 𝑧̇, 0)  with the parameter    𝑐11 = 𝑐1̇1 = 𝑐10𝑧̇ − (𝑐13 +
𝑐14) has: 

 No saddle –node bifurcation. 

 Transcritical bifurcation. 

 No pitch fork bifurcation. 

 

Proof: According to the Jacobian matrix  𝐽3 given in[4] the system (2.2) at the equilibrium point 𝐸3 has zero eigenvalue (say 

𝜆3𝑤 = 0) at  𝑐11 = 𝑐̇11  , it is clear that  𝑐̇11 > 0  provided that the condition (3.3𝑎) holds, and the Jacobian matrix  𝐽2 with 

 𝑐11 = 𝑐̇11  becomes:  

 

𝐽3̇ = 𝐽3(𝑐̇11) = [𝑧̇𝑖𝑗]4×4
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where  𝑧̇𝑖𝑗 = 𝑧𝑖𝑗   for all  𝑖, 𝑗 = 1,2,3,4   except  𝑧̇44 = 0. 

 

Now, let   V[3] = (v1
[3]

 , v2
[3]

 , v3
[3]

 , v4
[3]

)
𝑇

 be the eigenvector corresponding to the eigenvalue  𝜆3w = 0.  

Thus (𝐽3̇ − 𝜆3w𝐼)V[3] = 0, which gives: 

v1
[3]

= −
𝑧̇34

𝑧̇31

v4
[3]

 ,   v2
[3]

= 0,   v3
[3]

=
𝑧̇11

𝑧̇13

𝑧̇34

𝑧̇31

v4
[3]

       

and  v4
[3]

 is any nonzero real number. Let  𝐵[3] = (𝑏1
[3]

 , 𝑏2
[3]

 , 𝑏3
[3]

 , 𝑏4
[3]

)
𝑇

 be the eigenvector associated with the 

eigenvalue     𝜆3w = 0     of    the   matrix  𝐽3̇
𝑇  .  Then we have, ( 𝐽3̇

𝑇 − 𝜆3w𝐼)𝐵[3] = 0 . By solving this equation for  𝐵[3] we 

obtain, 𝐵[3] = (0 , 0 , 0 , b4
[3]

)
𝑇

, where  𝑏4
[3]

 is any nonzero real number. Now, consider: 

𝜕𝑓

𝜕𝑐11

= 𝑓𝑐11
(𝑋 , 𝑐11) = (

𝜕𝑓1
𝜕𝑐11

,
𝜕𝑓2

𝜕𝑐11

,
𝜕𝑓3

𝜕𝑐11

,
𝜕𝑓4
𝜕𝑐11

)
𝑇

= (0 , 0 , −𝑧, −𝑤)𝑇  . 

So,  𝑓𝑐11
(𝐸3 , 𝑐̇11) = (0 , 0 , −𝑧̇ , 0)𝑇 and hence (𝐵[3])

𝑇
𝑓𝑐11

(𝐸3, 𝑐̇11) = 0  . 

 

Therefore, by using Sotomayor’s theorem the saddle-node bifurcation condition can not satisfy. While the first condition of 

transcritical bifurcation is satisfied. Now, since 

𝐷𝑓c11
(𝑋 , 𝑐11) =  

[
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1]
 
 
 
 

 ,  

where  𝐷𝑓c11
(𝑋 , 𝑐11)  represents the derivative of  𝑓c11

(𝑋 , 𝑐11) with respect to 𝑋 = (𝑥 , y , z, 𝑤)𝑇 .Further ,it is observed 

that 

𝐷𝑓c11
( 𝐸3 , 𝑐̇11)𝑉

[3] =

[
 
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0  0 −1]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 −

𝑧̇34

𝑧̇31
v4

[3]

0

𝑧̇11

𝑧̇13

𝑧̇34

𝑧̇31
v4

[3]

v4
[3]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

0

0

−
𝑧̇11

𝑧̇13

𝑧̇34

𝑧̇31
v4

[3]

−v4
[3]

]
 
 
 
 
 
 

 

(𝐵[3])
𝑇
[𝐷𝑓𝑐11

(𝐸3 , 𝑐̇11)V
[3]] = (0 , 0 , 0 , b4

[3]
) (0 ,0 , −

𝑧̇11

𝑧̇13

𝑧̇34

𝑧̇31

v4
[3]

, −v4
[3]

)
𝑇

= −v4
[3]

b4
[3]

≠ 0 

 

Moreover, by substituting  V[3] in (3.1) we get: 

𝐷2𝑓(𝐸3 , 𝑐̇11)(V
[3] , V[3]) =

[
 
 
 
 
 
 
 
 
 2 (

𝑧̇34

𝑧̇31
v4

[3]
)
2

 (−1 + 𝑐3𝑐2

𝑧

𝑅̇3

̇
+

𝑐2𝑐3

𝑅̇2

𝑧̇11

𝑧̇13
) 

0

2 (v4
[3]

)
2
(−

𝑐3𝑐8𝑧̇

𝑅̇3
(
𝑧̇34

𝑧̇31
)
2

−
𝑐8𝑐3

𝑅2̇

𝑧̇11

𝑧̇13
(
𝑧̇34

𝑧̇31
)
2

− 𝑐10

𝑧̇11

𝑧̇13

𝑧̇34

𝑧̇31
)

2𝑐10

𝑧̇11

𝑧̇13

𝑧̇34

𝑧̇31
 (v4

[3]
)
2
 

]
 
 
 
 
 
 
 
 
 

    

Hence, it is obtain that: 

(𝐵[3])
𝑇
[𝐷2𝑓(𝐸3 , 𝑐̇11)(V

[3] , V[3])] = 2𝑐10

𝑧̇11

𝑧̇13

𝑧̇34

𝑧̇31

 (v4
[3]

)
2

𝑏4
[3]

≠ 0 

Thus, by using Sotomayor’s theorem system  (2.2)  has transcritical bifurcation at  𝐸3 with the parameter  𝑐11 = 𝑐̇11  , and no 

pitch fork bifurcation can occurs at 𝑐11 = 𝑐̇11           ∎ 

 

Theorem (3.4): Suppose that the following conditions (4.18)and (4.19) 

Γ1 ≠ Γ2                                                                                                                                (3.4𝑎) 

𝑐10𝑧̿ + 𝑐12𝑦̿ > (𝑐13 + 𝑐14) ,                                                                                               (3.4𝑏) where    

Γ1 = 𝑐12(𝑑13𝑑21𝑑34 − 𝑑11𝑑23𝑑34) + 𝑐10 𝑑12𝑑31𝑑24   and  

Γ2 = 𝑐12𝑑13𝑑24𝑑31 + 𝑐10 (𝑑11𝑑32𝑑24 + 𝑑12𝑑21𝑑34) 

 

are satisfied. Then system (2.2) at the equilibrium point  𝐸4 = (𝑥̿, 𝑦̿, 𝑧,̿ 0)  with the parameter 𝑐11 = 𝑐1̿1 = 𝑐10𝑧̿ + 𝑐12𝑦̿ −
(𝑐13 + 𝑐14) has: 
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 No saddle –node bifurcation. 

 Transcritical bifurcation. 

 No pitch fork bifurcation. 

 

Proof: According to the Jacobian matrix  𝐽4 given in[4]the system (2.2) at the equilibrium point 𝐸4 has zero eigenvalue (say 

𝜆4𝑤 = 0) at  𝑐11 = 𝑐1̿1  , it is clear that  𝑐1̿1 > 0  provided that the condition (3.4𝑏) holds, and the Jacobian matrix  𝐽4 with 

 𝑐11 = 𝑐1̿1  becomes:  

 

𝐽4̿ = 𝐽4(𝑐1̿1) = [𝑑̿𝑖𝑗]4×4
,  

where 𝑑̿𝑖𝑗 = 𝑑𝑖𝑗  for all  𝑖, 𝑗 = 1,2,3,4   except  𝑑̿44 = 0. 

Now, let   V[4] = (v1
[4]

 , v2
[4]

 , v3
[4]

 , v4
[4]

)
𝑇

 be the eigenvector corresponding to the eigenvalue  𝜆4w = 0. Thus 

 (𝐽4̿ − 𝜆4w𝐼)V[4] = 0, which gives: 

v1
[4]

=
𝐴

𝑈3

v4
[4]

,   v2
[4]

=
𝐵

𝑈3

v4
[4]

,      v3
[4]

=
𝐶

𝑈3

v4
[4]

, 

where 

𝐴 = 𝑑13𝑑24𝑑32 + 𝑑12𝑑23𝑑34 

𝐵 = 𝑑13𝑑21𝑑34 − 𝑑11𝑑23𝑑34 − 𝑑13𝑑24𝑑31 

𝐶 = 𝑑24(𝑑12𝑑31 − 𝑑11𝑑32) − 𝑑12𝑑21𝑑34 

𝑈3 = 𝑑11𝑑23𝑑32 − 𝑑12𝑑23𝑑31 − 𝑑13𝑑21𝑑32 > 0, under the conditions of the stability (4.18) and (4.19), which are given in 

[4] ,and   𝑣4
[4]

 is any nonzero real number. 

 

 Let  𝐵[4] = (𝑏1
[4]

 , 𝑏2
[4]

 , 𝑏3
[4]

 , 𝑏4
[4]

)
𝑇

 be the eigenvector associated with the eigenvalue     𝜆4w = 0     of    the   matrix   𝐽4̿
𝑇  .  

Then we have, ( 𝐽4̿
𝑇 − 𝜆4w𝐼)𝐵[4] = 0 . By solving this equation for  𝐵[4]    we obtain, 𝐵[4] = (0 , 0 , 0 , b4

[4]
)

𝑇

, where  𝑏4
[4]

 is 

any nonzero real number. Now, consider: 

 

𝜕𝑓

𝜕𝑐11

= 𝑓𝑐11
(𝑋 , 𝑐11) = (

𝜕𝑓1
𝜕𝑐11

,
𝜕𝑓2

𝜕𝑐11

,
𝜕𝑓3

𝜕𝑐11

,
𝜕𝑓4
𝜕𝑐11

)
𝑇

= (0 , 0 , −𝑧, −𝑤)𝑇  . 

 

So,  𝑓𝑐11
(𝐸4 , 𝑐1̿1) = (0 , 0 , −𝑧̿ , 0)𝑇 and hence (𝐵[4])

𝑇
𝑓𝑐11

(𝐸4, 𝑐1̿1) = 0  . 

 

Therefore, by using Sotomayor’s theorem the saddle-node bifurcation condition can not satisfy. While the first condition of 

transcritical bifurcation is satisfied. Now, since 

𝐷𝑓c11
(𝑋 , 𝑐11) =  

[
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1]
 
 
 
 

   

 

where  𝐷𝑓c11
(𝑋 , 𝑐11)  represents the derivative of  𝑓c11

(𝑋 , 𝑐11) with respect to 𝑋 = (𝑥 , y , z, 𝑤)𝑇 .Further ,it is observed 

that 

𝐷𝑓c11
( 𝐸4 , 𝑐1̿1)𝑉

[4] =

[
 
 
 
 
 
 
0 0 0 0

0 0 0 0

0 0 −1 0

0 0  0 −1]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝐴

𝑈3

v4
[4]

  

𝐵

𝑈3

v4
[4]

𝐶

𝑈3

v4
[4]

v4
[4]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

0

0

−
𝐶

𝑈3

v4
[4]

−v4
[4]

]
 
 
 
 
 
 

 

(𝐵[4])
𝑇
[𝐷𝑓𝑐11

(𝐸4 , 𝑐1̿1)V
[4]] = (0 , 0 , 0 , b4

[4]
) (0 ,0 , −

𝐶

𝑈3

v4
[4]

 , −v4
[4]

)
𝑇

= −v4
[4]

b4
[4]

≠ 0 

 

Moreover, by substituting  V[4] in (3.1) we get: 
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𝐷2𝑓(𝐸4 , 𝑐1̿1)(V
[4] , V[4]) =

[
 
 
 
 
 
 
 
 
 
 −2

A

U3

v4
[4]

(
A

U3

v4
[4]

− 𝑐3𝑐2𝑧̿  
A

R̿3U3

v4
[4]

+ (1 + 𝑐1)
𝐵

𝑈3

v4
[4]

+
𝑐2𝑐3

𝑅̿2

𝐶

𝑈3

v4
[4]

) 

2
𝐵

𝑈3

 (v4
[4]

)
2

(
𝑐1𝐴

𝑈3

− 𝑐4

𝐶

𝑈3

− 𝑐5)

2(v4
[4]

)
2

(−
𝑐8𝑐3𝑧̿

𝑅̿3
(

A

U3

)
2

+
𝑐8𝑐3

𝑅̿2
(
𝐴𝐶

𝑈3  
2 ) +

𝑐9𝐵𝐶

𝑈3
2 −

𝑐10𝐶

𝑈3

)

2
(v4

[4]
)

2

𝑈3

 (𝑐12𝐵 + 𝑐10𝐶) 
]
 
 
 
 
 
 
 
 
 
 

    

Hence, it is obtain that: 

(𝐵[4])
𝑇
[𝐷2𝑓(𝐸4 , 𝑐1̿1)(V

[4] , V[4])] = 2
(v4

[4]
)

2

𝑈3

 (𝑐12𝐵 + 𝑐10𝐶)𝑏4
[4]

 

= 2
(v4

[4]
)

2

𝑈3

b4
[4](𝑐12(𝑑13𝑑21𝑑34 − 𝑑11𝑑23𝑑34) + 𝑐10 𝑑12𝑑31𝑑24 − (𝑐12𝑑13𝑑24𝑑31 + 𝑐10 (𝑑11𝑑32𝑑24 + 𝑑12𝑑21𝑑34) ) )

= 2
(v4

[4]
)

2

𝑈3

b4
[4]

(Γ1 − Γ2) 

So, according to condition (3.4𝑎)  and in addition to the conditions of the stability (4.18) and (4.19), which are given in [4] 

,we obtain that: 

 

(𝐵[4])
𝑇
[𝐷2𝑓(𝐸4 , 𝑐1̿1)(V

[4] , V[4])] ≠ 0 

Thus, by using Sotomayor’s theorem system  (2.2)  has transcritical bifurcation at  𝐸4 with the parameter  𝑐11 = 𝑐1̿1, on the 

other hand if the condition (3.4a) is relegation, then we get: 

𝐷3𝑓(𝐸4 , 𝑐1̿1)(V
[4] , V[4], 𝑉[4]) =

[
 
 
 
 
 
 
 
 (−

6𝑐2𝑐3𝑧̿𝐴
2

𝑅̿4𝑈3

+
6𝑐2𝑐3

𝑅̿3
𝐶)𝐴

𝑈3
2   (𝑣4

[4]
)

3

 

0

6𝑐3𝑐8𝑧̿

𝑅̿4
(
𝐴𝑣4

[4]

𝑈3

)

3

−

6𝑐3𝑐8

𝑅̿3
𝐴𝐶

𝑈3
2 (𝑣4

[4]
)

3

0 ]
 
 
 
 
 
 
 
 

 

(𝐵[4])
𝑇
[𝐷3𝑓(𝐸4 , 𝑐1̿1)(V

[4] , V[4], V[4])] = 0 

So, there is no pitch fork bifurcation.   ∎ 

 

Theorem (3.5): Suppose that the following condition (4.26)  

𝑐1𝑥̃ > 𝑐4𝑧̃ + 𝑐5𝑤̃ + 𝑐7                                                                                                        (3.5𝑎) 

𝑐10𝑧̃ < (𝑐11 + 𝑐13 + 𝑐14)                                                                                                   (3.5𝑏) 

𝜉1 ≠ 𝜉2                                                                                                                                (3.5𝑐) 

where    

𝜉1 = 𝑐1𝑟13𝑟34𝑟42 + 𝑐4(𝑟11𝑟34𝑟42 + 𝑟12𝑟31𝑟44) − 𝑐5𝑟12𝑟31𝑟43 
 and  

𝜉2 = 𝑐1( 𝑟13𝑟32𝑟44 + 𝑟12𝑟34𝑟43) + 𝑐4𝑟11𝑟32𝑟44 + 𝑐5(𝑟11𝑟32𝑟43 + 𝑟13𝑟31𝑟42) 
are satisfied. Then system (2.2) at the equilibrium point  𝐸5 = (𝑥̃, 0, 𝑧̃, 𝑤̃)  with the parameter    𝑐6 = 𝑐̃6 = 𝑐1𝑥̃ − (𝑐4𝑧̃ +
𝑐5𝑤̃ + 𝑐7) has: 

 

 No saddle –node bifurcation. 

 Transcritical bifurcation. 

 No pitch fork bifurcation. 

 

Proof: According to the Jacobian matrix  𝐽5 given in[4], the system (2.2) at the equilibrium point 𝐸5 has zero eigenvalue 

(say 𝜆5𝑦 = 0) at 𝑐6 = 𝑐̃6   , it is clear that 𝑐̃6 > 0  provided that the condition (3.5𝑎) holds, and the Jacobian matrix  𝐽5 with 

 𝑐6 = 𝑐̃6  becomes:  

 

𝐽5 = 𝐽5(𝑐̃6) = [𝑟̃𝑖𝑗]4×4
,  

where  𝑟̃𝑖𝑗 = 𝑟𝑖𝑗  for all  𝑖, 𝑗 = 1,2,3,4   except  𝑟̃22 = 0. 
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Now, let   V[5] = (v1
[5]

 , v2
[5]

 , v3
[5]

 , v4
[5]

)
𝑇

 be the eigenvector corresponding to the eigenvalue  𝜆5y = 0. Thus (𝐽5 −

𝜆5y𝐼)V
[5] = 0, which gives: 

 

v1
[5]

= 𝐻1v2
[5]

,   v3
[5]

= 𝐻2v2
[5]

,      v4
[5]

= 𝐻3v2
[5]

, 
where  

𝐻1 =
𝑟13𝑟34𝑟42 − 𝑟13𝑟32𝑟44 − 𝑟12𝑟34𝑟43

𝜁
, 

𝐻2 =
−(𝑟11𝑟34𝑟42 + 𝑟12𝑟31𝑟44) + 𝑟11𝑟32𝑟44

𝜁
, 

𝐻3 =
𝑟12𝑟31𝑟43 − (𝑟11𝑟32𝑟43 + 𝑟13𝑟31𝑟42)

𝜁
, 

𝜁 = 𝑟11𝑟34𝑟43 + 𝑟31𝑟13𝑟44 > 0  under the condition of the stability (4.26 ) ,which is given in [4] and in addition  (3.5𝑏),and 

v2
[5]

 is any nonzero real number. Let  𝐵[5] = (𝑏1
[5]

 , 𝑏2
[5]

 , 𝑏3
[5]

 , 𝑏4
[5]

)
𝑇

 be the eigenvector associated with the eigenvalue 𝜆5y =

0 of the  matrix   𝐽5
𝑇 .  Then we have, ( 𝐽5

𝑇 − 𝜆5y𝐼)𝐵
[5] = 0 . By solving this equation for  𝐵[5] we obtain, 𝐵[5] =

(0 , b2
[5]

 , 0 , 0)
𝑇

, where  𝑏2
[5]

 is any nonzero real number. Now, consider: 

 
𝜕𝑓

𝜕𝑐6

= 𝑓𝑐6
(𝑋 , 𝑐6) = (

𝜕𝑓1
𝜕𝑐6

,
𝜕𝑓2

𝜕𝑐6

,
𝜕𝑓3

𝜕𝑐6

,
𝜕𝑓4
𝜕𝑐6

)
𝑇

= (0 , −𝑦 , 0, 0)𝑇  . 

So,  𝑓𝑐6
(𝐸5 , 𝑐̃6) = (0 , 0 , 0, 0)𝑇 and hence (𝐵[5])

𝑇
𝑓𝑐6

(𝐸5, 𝑐̃6) = 0  . 
 
Therefore, by using Sotomayor’s theorem the saddle-node bifurcation condition can not satisfy. While the first condition of 

transcritical bifurcation is satisfied. Now, since 

𝐷𝑓c6
(𝑋 , 𝑐̃6) =  

[
 
 
 
 
0 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0]
 
 
 
 

   

where  𝐷𝑓c6
(𝑋 , 𝑐6)  represents the derivative of  𝑓c6

(𝑋 , 𝑐6) with respect to 𝑋 = (𝑥 , y , z, 𝑤)𝑇 .Further ,it is observed that 

 

𝐷𝑓c6
( 𝐸5 , 𝑐̃6)𝑉

[5] =

[
 
 
 
 
 
 
0 0 0 0

0 −1 0 0

0 0 0 0

0 0  0 0]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 𝐻1v2

[5]

v2
[5]

𝐻2v2
[5]

𝐻3v2
[5]

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

0

−v2
[5]

0

0 ]
 
 
 
 
 
 

 

 
(𝐵[5])

𝑇
[𝐷𝑓𝑐6

(𝐸5 , v2
[5]

)V[5]] = (0 , 𝑏2
[5]

 , 0 , 0)(0 , −v2
[5]

 , 0,0)
𝑇

= −𝑏2
[5]

v2
[5]

≠ 0 
 

Moreover, by substituting  V[5] in (3.1) we get: 

 

𝐷2𝑓(𝐸5 , 𝑐̃6)(V
[5] , V[5]) =

[
 
 
 
 
 
 
 
 
 −2𝐻1( v2

[5]
)

2

(𝐻1 (1 − 𝑐3𝑐2

𝑧

𝑅̃3

̃
) + (𝑐1 + 1) +

𝑐2𝑐3

𝑅̃2
𝐻3)

2(v2
[5]

)
2

(𝑐1𝐻1 − 𝑐4𝐻2 − 𝑐5𝐻3)

−
2𝑐3𝑐8𝑧 ̃

𝑅̃3
 (𝐻1v2

[5]
)

2

+
2𝑐3𝑐8

𝑅2̃
 𝐻1𝐻2(v2

[5]
)

2

+ 2𝐻2(v2
[5]

)
2
(𝑐9 − 𝑐10𝐻3)

2𝐻3(v2
[5]

)
2

 (𝑐12 + 𝑐10𝐻2) ]
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Hence, it is obtain that: 

(𝐵[5])
𝑇
[𝐷2𝑓(𝐸5 , 𝑐̃6)(V

[5] , V[5])] = 2(v2
[5]

)
2

(𝑐1𝐻1 − 𝑐4𝐻2 − 𝑐5𝐻3)𝑏2
[5] 

= 2(v2
[5]

)𝑏2
[5]

[𝑐1𝑟13𝑟34𝑟42 + 𝑐4(𝑟11𝑟34𝑟42 + 𝑟12𝑟31𝑟44) − 𝑐5𝑟12𝑟31𝑟43

− (𝑐1( 𝑟13𝑟32𝑟44 + 𝑟12𝑟34𝑟43) + 𝑐4𝑟11𝑟32𝑟44 − 𝑐5(𝑟11𝑟32𝑟43 + 𝑟13𝑟31𝑟42))] = 2(v2
[5]

)𝑏2
[5]

(𝜉1 − 𝜉2) 
So, according to conditions(3.5a), (3.5b), (3.5c) and in addition to the condition of the stability (4.26) given in [4], we 

obtain that: 

(𝐵[5])
𝑇
[𝐷2𝑓(𝐸5 , 𝑐̃6)(V

[5] , V[5])] ≠ 0 
 

Thus, by using Sotomayor’s theorem system  (2.2)  has transcritical bifurcation at  E5 with the parameter  c6 = c̃6 , on the 

other hand if the condition (3.5c) is relegation ,then we get:   

 

(𝐵[5])
𝑇
[𝐷3𝑓(𝐸5 , 𝑐̃6)(V

[5] , V[5], V[5])] =

[
 
 
 
 
 −

6𝑐2𝑐3𝑧̃

𝑅̃4
(𝐻1𝑣2

[5]
)

3

 +
6𝑐2𝑐3

𝑅̃3
𝐻1

2𝐻2(𝑣2
[5]

)
2

0
6𝑐3𝑐8𝐻1

2

𝑅̃3
(𝑣2

[5]
)

2

(
𝐻1𝑧̃

𝑅̃
− 𝐻2)

0 ]
 
 
 
 
 

 

 (𝐵[5])
𝑇
[𝐷3𝑓(𝐸5 , 𝑐̃6)(V

[5] , V[5], V[5])] = 0 
So, there is no pitch fork bifurcation   ∎ 

 

Theorem (3.6): Suppose that the  following conditions  

𝑐10(1 + 𝑐1) <
𝑐2𝑐12

𝑐3 + 𝑥∗
                                                                                                                     (3.6𝑎) 

𝑐8𝑙24

𝑙34

> −
𝑐2(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

                                                                                                        (3.6𝑏) 
Λ1 ≠ Λ2 ,                                                                                                                                            (3.6𝑐) 

where 

Λ1 = −𝑃1
2
(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

+ (
𝑐2(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

+
𝑐8𝑙24

𝑙34

)(
𝑐3𝑧

∗𝑃1
2

𝑅∗3𝑙43

+
𝑐3𝑙42𝑃1

𝑅∗2𝑙43

) + 𝑃1 (−(1 + 𝑐1)
(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

+ 𝑐1)

+
𝑙42

𝑙43

(𝑐4 +
𝑙24

𝑙34

𝑐9) −
𝑙23

𝑙43

𝑐12𝑃2 +
𝑐10

𝑙43
2 𝑃2𝑙13 (

(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

), 
and  

Λ2 = 𝑃2 (𝑐5 +
𝑐12𝑙13

𝑙43

(
(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

)) −
𝑐10𝑃2𝑙42

𝑙43

(
𝑙23

𝑙43

−
𝑙24

𝑙34

) , 

       
  𝑃1 =

𝑙13𝑙42 − 𝑙43𝑙12

𝑙11𝑙43

      𝑎𝑛𝑑    𝑃2 = −
1

𝑙34

(𝑙31𝑃1 + 𝑙32), 

   
are satisfied. Then for the parameter value : 

𝑐4
∗ =

1

𝑐10𝑐12 (1 −
𝑐2𝑧

∗

𝑅∗2 )
[𝑐10

2 𝑐1(𝑐1 + 1) +
𝑐2𝑐12

𝑅∗3 (𝑐5𝑐3𝑐8 − 𝑐1𝑐10𝑅
∗2) + 𝑐5𝑐10 (𝑐9 (1 −

𝑐2𝑧
∗

𝑅∗2 ) −
𝑐3𝑐8(𝑐1 + 1)

𝑅∗2 )]  

 

The system (2.2) at the equilibrium point  𝐸6 = (𝑥∗, 𝑦∗, 𝑧∗, 𝑤∗)   has saddle –node bifurcation, but neither transcritical 

bifurcation, nor pitch fork bifurcation can occur at 𝐸6 

 

proof: The characteristic equation of Jacobian matrix  𝐽6 given in[4] having zero eigenvalue (say  𝜆6𝑦 = 0 ) if and only 

if  𝑁4 = 0  and ,then  𝐸6 becomes a non-hyperbolic equilibrium point. Clearly the Jacobian matrix of system (2.2)  at the 

equilibrium point  𝐸6 with parameter 𝑐4 = 𝑐4
∗ becomes:  

 𝐽6
∗ = 𝐽6(𝑐4

∗ ) = [ 𝑙𝑖𝑗
∗  ]

4×4
,  

where  𝑙∗𝑖𝑗 = 𝑙𝑖𝑗 for all  𝑖, 𝑗 = 1,2,3,4  except   𝑙23
∗ = −𝑐4

∗𝑦∗.  Note that , 𝑐4
∗ > 0 under the conditions of the stability  

(4.29),(4.32) and ( 4.33), which are given in [4]. Now, let   V[6] = (v1
[6]

 , v2
[6]

 , v3
[6]

 , v4
[6]

)
𝑇

 be the eigenvector corresponding 

to the eigenvalue  𝜆6y = 0. Thus (𝐽∗
6 − 𝜆2y𝐼)V

[6] = 0, which gives: 

v1
[6]

= 𝑃1v2
[6]

,     v3
[6]

= −
𝑙42

𝑙43

v2
[6]

,    v4
[6]

= 𝑃2v2
[6]
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and   v2
[5]

 is any nonzero real number. Let  𝐵[6] = (𝑏1
[6]

 , 𝑏2
[6]

 , 𝑏3
[6]

 , 𝑏4
[6]

)
𝑇

 be the eigenvector associated with the 

eigenvalue     𝜆6y = 0     of    the   matrix  𝐽6
∗𝑇 .  Then we have, (𝐽6

∗𝑇 − 𝜆6y𝐼)𝐵
[6] = 0 . By solving this equation for  𝐵[6] we 

obtain, 

𝑏1
[6]

=
𝑙31𝑙24 − 𝑙21𝑙34

𝑙11𝑙34

𝑏2
[6]

 , 𝑏3
[6]

= −
𝑙24

𝑙34

  𝑏2
[6]

 , 

 𝑏4
[6]

= −
1

𝑙43

[𝑙13 (
𝑙31𝑙24 − 𝑙21𝑙34

𝑙11𝑙34

) + 𝑙23) 𝑏2
[6] 

 

and     𝑏2
[6]

 is any nonzero real number. Now, consider: 

𝜕𝑓

𝜕𝑐4

= 𝑓𝑐4
(𝑋 , 𝑐4) = (

𝜕𝑓1
𝜕𝑐4

,
𝜕𝑓2

𝜕𝑐4

,
𝜕𝑓3

𝜕𝑐4

,
𝜕𝑓4
𝜕𝑐4

)
𝑇

= (0 , −𝑦 𝑧, 0, 0)𝑇  . 

 

𝑓𝑐4
(𝐸6 , 𝑐4

∗) = (0 , −𝑧∗𝑦∗ , 0, 0)𝑇 and hence (𝐵[6])
𝑇
𝑓𝑐4

(𝐸6, 𝑐4
∗) = − 𝑧∗𝑦∗𝑏2

[6]
≠ 0 . Therefore, by using Sotomayor’s theorem 

the transcritical and pitchfork bifurcation cannot occur. While the first condition of saddle-node bifurcation is satisfied. Now, 

by substituting V[6] in Eq (3.1) we get: 

 
𝐷2𝑓(𝐸6, 𝑐4

∗)(𝑉6
[6]

, 𝑉6
[6]

) = (ℎ𝑖𝑗)4×1
 

ℎ11 = −2𝑃1(𝑣2
[6]

)
2

(𝑃1 (1 −
𝑐3𝑐2𝑧

∗

𝑅∗3 ) + (1 + 𝑐1) −
𝑐2𝑐3𝑙42

𝑅∗2𝑙43

) 

ℎ21 = 2(𝑣2
[6]

)
2

(𝑐1𝑃1 +
𝑐4𝑙42

𝑙43

− 𝑐5𝑃2) 

ℎ31 = (−(
2𝑐3𝑐8𝑧

∗𝑃1
2

𝑅∗3 +
2𝑐3𝑐8𝑙42𝑃1

𝑅∗2𝑙43

+
2𝑐9𝑙42

𝑙43

) +
2𝑐10𝑃2𝑙42

𝑙43

) (𝑣2
[6]

)
2

 

ℎ41 = 2𝑃2(𝑣2
[6]

)
2

(𝑐12 −
𝑐10𝑙42

𝑙43

) 

Now, 

(𝐵6
[6]

)
𝑇

(𝐷2𝑓(𝐸6, 𝑐4
∗)(𝑉6

[6]
, 𝑉6

[6]
))

= 2𝑏2
[6]

(𝑣2
[6]

)
2

[−𝑃1
2
(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

+ (
𝑐2(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

+
𝑐8𝑙24

𝑙34

)(
𝑐3𝑧

∗𝑃1
2

𝑅∗3𝑙43

+
𝑐3𝑙42𝑃1

𝑅∗2𝑙43

)

+ 𝑃1 (−(1 + 𝑐1)
(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

+ 𝑐1) +
𝑙42

𝑙43

(𝑐4
∗ +

𝑙24

𝑙34

𝑐9) −
𝑙23

𝑙43

𝑐12𝑃2 +
𝑐10

𝑙43
2 𝑃2𝑙13 (

(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

)

− 𝑃2 (𝑐5 +
𝑐12𝑙13

𝑙43

(
(𝑙31𝑙24 − 𝑙21𝑙34)

𝑙11𝑙34

)) +
𝑐10𝑃2𝑙42

𝑙43

(
𝑙23

𝑙43

−
𝑙24

𝑙34

)] = 2𝑏2
[6]

(𝑣2
[6]

)
2

(Λ1 − Λ2) ≠ 0 

provided that the conditions (3.6𝑎) − (3.6𝑐) in addition to the conditions of the stability  (4.29),(4.32) and ( 4.33), which 

are given in [4].  Therefore, according to Sotomayors theorem the saddle node bifurcation occur at 𝐸6  ∎ 

 

4 Hopf bifurcation analysis: 

To discuss the occurrence of Hopf  bifurcation , first we need to know that the Hopf bifurcation for 𝑛 = 4 are constructed 

according to the Haque and Venturino methods [10]. Consider the characteristic equation given by: 

 

𝑃4(𝜏) = 𝜏4 + 𝐶1𝜏
3 + 𝐶2𝜏

2 + 𝐶3𝜏 + 𝐶4 = 0 

here         *
23

*
12

*
1 ,, xJMCxJMCxJtrC 

 
and   *

4 det xJC   

with   *
1 xJM  and   *

2 xJM  represent the sum of the principal minors of order two and three of 

 *xJ  respectively.  

 

Clearly, the first condition of  Hopf  bifurcation holds if and only if: 

                04;0;3,1;0 1
3
13211  CCCCiCi  

                           04
2
132132  CCCCCC
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Consequently, .
 

2
1

3213
4

C

CCCC
C


  So, the characteristic equation becomes: 

  0
1

1
1

2

1

32
4 







 











C
C

C

C
P                                                                     (1.31)   

 

Clearly, the roots of eq. (1.31) are : 

 

1

3
4,3

1

12
112,1 ,4

2

1

C

C
i

C
CC 












 
 

 
 

Now, to verify the transversality condition of  Hopf  bifurcation, we substitute 𝜏(𝜂) = 
1
(𝜂) ∓ 𝑖

2
(𝜂) into eq. (1.31), and 

then calculating its derivative with respect to the bifurcation parameter 𝜂 ,  𝑃4
′(𝜏(𝜂)) = 0 comparing the two sides of this 

equation and then equating their real and imaginary parts, we have:                   
Ψ̅(𝜂) 

1
′ (𝜂) − Φ̅(𝜂) 

2
′ (𝜂) + Θ̅(𝜂) = 0

Φ̅(𝜂) 
1
′ (𝜂) + Ψ̅(𝜂) 

2
′ (𝜂) + Γ̅(𝜂) = 0   

}                                                                                       (1.32) 

 
where   
Ψ̅(𝜂) = 4 (

1
(𝜂))3 + 3𝐶1(𝜂)(

1
(𝜂))2 + 𝐶3(𝜂) + 2𝐶2(𝜂)

1
(𝜂) 

−12 
1
(𝜂) 

2
2(𝜂) − 3𝐶1(𝜂)(

2
(𝜂))2 

Φ̅(𝜂) = 12 (
1
(𝜂))2

2
(𝜂) + 6𝐶1(𝜂) 

1
(𝜂) 

2
(𝜂) + 2 𝐶2(𝜂)

2
(𝜂) 

− 4 (
2
(𝜂))3                                                                                                                                  1.33) 

Θ̅(𝜂) = (
1
(𝜂))3𝐶1

′(𝜂) + 𝐶3
′(𝜂) 

1
(𝜂) + 𝐶2

′(𝜂)(
1
(𝜂))2 + 𝐶4

′(𝜂)                               
− 3 𝐶1

′(𝜂) 
1
(𝜂)(

2
(𝜂))2 − 𝐶2

′(𝜂)(
2
(𝜂))2 

Γ̅(𝜂) = 3 (
1
(𝜂))2

2
(𝜂)𝐶1

′(𝜂) + 𝐶3
′(𝜂)

2
(𝜂) + 2𝐶2

′(𝜂) 
1
(𝜂) 

2
(𝜂) 

− 𝐶1
′(𝜂)(

2
(𝜂))3 

 

Solving the linear system (1.32) by using Cramer's rule for the unknowns 
1
′ (𝜂) and 

2
′ (𝜂), gives that: 

 


1
′ (𝜂) = −

Θ̅(𝜂)Ψ̅(𝜂) + Γ̅(𝜂)Φ̅(𝜂)

(Ψ̅(𝜂))2 + (Φ̅(𝜂))2
 and 

2
′ (𝜂) =

−Γ̅(𝜂)Ψ̅(𝜂) + Θ̅(𝜂)Φ̅(𝜂)

(Ψ̅(𝜂))2 + (Φ̅(𝜂))2
 

 

Hence the transversality condition not being zero if and only if: 

Θ̅(𝜂)Ψ̅(𝜂) + Γ̅(𝜂)Φ̅(𝜂)  ≠ 0                                                                                                        (1.34) 

 

Theorem (4.1): Suppose that the following conditions (4.29) − (4.34) and in addition to the following condition: 

𝑁3  <  ∆1 <
𝑁1

3

4
                                                                                                                               (4.1𝑎) 

𝑐10𝑐9𝑧
∗ > 𝑐12𝑁1                                                                                                                              (4.1𝑏) 

 

Where   ∆1= −𝑙11(𝑝4 + 𝑝5) − (𝑝6 + 𝑝7 + 𝑝10), are satisfied, then at the parameter  𝑐5 = 𝑐5
⋆ ,the system (2.2) has a Hopf 

bifurcation near the point 𝐸6  

 

Proof: Consider the characteristic equation of system (2.2) at 𝐸6 which is given in[4], Then by using the Hopf bifurcation 

theorem for n = 4,  we need to find a parameter say (𝑐5
⋆) to verify the necessary and sufficient conditions for Hopf bifurcation 

to occur satisfy that: 𝑁i(𝑐5
⋆) > 0;  і = 1; 3 ,  ∆1(𝑐5

⋆) > 0 ,   𝑁1
3(𝑐5

⋆) − 4∆1(𝑐5
⋆) > 0  and   ∆2(𝑐5

⋆) = 0. 

Where 𝑁і;  і = 1 ,3  represent the coefficients of characteristic given in[4] straight forward computation gives that:      

𝑁і(𝑐5
⋆) > 0   ;    і = 1,3    , 𝑁1 > 0  provided that the condition (4.29) which given in [4]  and  𝑁3 > 0,   ∆1(𝑐5

⋆) > 0 provided 

that conditions of the stability   (4.29) – (4.32) and (4.34) are hold, which are given in [4], While 𝑁1
3(𝑐5

⋆) − 4∆1(𝑐5
⋆) > 0 

provided that condition (4.1𝑏)  holds. On the other hand, it is observed that  ∆2= 0 gives: 

𝜑1𝑐5
2 + 𝜑2𝑐5 + 𝜑3  = 0                                                                                                   (4.1𝑐) 
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where 

 𝜑1 = 𝑙32𝑙43𝑦
∗(𝑙11𝑙42 − 𝑙32𝑙43) < 0 

 𝜑2 = [𝑙11
2 𝑙42𝑝4 − 𝑙32𝑙43𝑝6 + 𝑙11𝑙42𝑝6 + 𝑙11

2 (𝑙11𝑙32𝑙43 − 𝑙12𝑙31𝑙43) − 𝑝7(𝑙32𝑙43 − 𝑙11𝑙42)
+ 𝑙32𝑙43(𝑁1(𝑝4 + 𝑝5) − [(𝑝6 − 𝑙11𝑝1) + 𝑝7 − 𝑙11𝑝2]) ]𝑦

∗ 
 𝜑3 = 𝑙11

2 (𝑝2𝑝4 + 𝑝5(𝑝1 + 𝑝2)) − 𝑝6((𝑝6 − 𝑙11𝑝1) + 𝑝7 − 𝑙11𝑝2) + 𝑙11
2 𝑝9 + 𝑙11𝑝6(𝑙11

2 − (𝑝4 + 𝑝5))

+ 𝑝7(𝑁1(𝑝4 + 𝑝5) − (𝑝6 − 𝑙11𝑝1) + 𝑝7 − 𝑙11𝑝2) 
it is easy to verify that, the eq. (4.1𝑐) has a unique positive root   

 

𝑐5
⋆ =

−1

2𝜑1 
(𝜑2 + √𝜑2

2 − 4 𝜑1𝜑3) 

  

provided that conditions (4.29) – (4.32) and (4.34) given in[4] , Now, at c5 = 𝑐5
⋆ the characteristic equation given in.[4] 

can be written as:  

(𝜆6
2 +

𝑁3 

𝑁1

) (𝜆6
2 + 𝑁1𝜆6 +

∆1

𝑁1 
) = 0    ,   

 

which has four roots  𝜆6 x,y = ±і√ 
𝑁3 

𝑁1
 and 𝜆6 z,w =

1

2
(−𝑁1 ± √𝑁1

2 − 4
∆1

 𝑁1
). 

 

Clearly, at  𝑐5  = 𝑐5
⋆  there are two pure imaginary eigenvalues  ( 𝜆6 𝑥 and  𝜆6𝑦 ) and two eigenvalues which are real and 

negative (4.1𝑎). Now for all values of  𝑐5 in the neighborhood of  𝑐5
⋆ , the roots in general of the following form: 

𝜆6x = δ1 + 𝑖δ2  , 𝜆6y = δ1 − 𝑖δ2  , 𝜆6 z,w =
1

2
(−𝑁1 ± √𝑁1

2 − 4
∆1

𝑁1

)  . 

Clearly,  𝑅𝑒 (𝜆6 𝑥,𝑦(c5))⃒c5=𝑐5
⋆ = 𝛿1(𝑐5

⋆) = 0  that means the first condition of the necessary and sufficient conditions for 

Hopf bifurcation is satisfied at  c5 = 𝑐5
⋆  .Now, according to verify the transversality condition we must prove that: 

Θ̅(𝑐5
⋆) Ψ̅(𝑐5

⋆) + Γ̅(𝑐5
⋆) Φ̅(𝑐5

⋆) ≠ 0    ,       

where  Θ̅ , Ψ̅ , Γ̅  and  Φ̅  are given in (1.33). Note that for  c5 = 𝑐5
⋆ we have  δ1 = 0  and  δ2  = √

𝑁3 

𝑁1
 , substituting the value 

of (δ2) gives the following simplifications: 

 

Ψ̅(𝑐5
⋆) = −2 𝑁3(𝑐5

⋆)  , 

Φ̅ (𝑐5
⋆) = 2 

δ2(𝑐5
⋆)

𝑁1 
(𝑁1𝑁2 − 2 𝑁3)  ,                            

Θ̅(𝑐5
⋆) = 𝑁4

′ (𝑐5
⋆) −

𝑁3 

𝑁1

𝑁2
′ (𝑐5

⋆)  ,                               

Γ̅(𝑐5
⋆) = δ2(𝑐5

⋆) (𝑁3
′ (𝑐5

⋆) −
𝑁3 

𝑁1

𝑁1
′ (𝑐5

⋆))   ,                                           

 

where 

𝑁1
′ =

𝑑𝑁1

𝑑c5

⃒c5=𝑐5
⋆ = 0  ,                                                                                

𝑁2
′ =

𝑑𝑁2

𝑑c5

⃒c5=𝑐5
⋆ = 𝑙42𝑦

∗   ,                                                   

𝑁3
′ =

𝑑𝑁3

𝑑c5

⃒c5=𝑐5
⋆ = (𝑙32𝑙43 + 𝑁1𝑙42)𝑦

∗   ,                               

𝑁4
′ =

𝑑𝑁4

𝑑c5

⃒c5=𝑐5
⋆ = (𝑁1𝑙32𝑙43 + 𝑝5𝑙42 + 𝑙31𝑙12𝑙43)𝑦

∗   .                     

Then we are calculate: 

Θ̅(𝑐5
⋆) Ψ̅(𝑐5

⋆) + Γ̅(𝑐5
⋆) Φ̅(𝑐5

⋆) = (𝑙43(𝑁1𝑙32 + 𝑙31𝑙12) + 𝑝5𝑙42 + −
𝑙42𝑁3

𝑁1

) (−2𝑁3𝑦
∗) +

2𝑁3

𝑁1
2

(∆1 − 𝑁3)(𝑙32𝑙43 − 𝑙11𝑙42)𝑦
∗

≠ 0 

 

provided that conditions (4.1𝑎)𝑎𝑛𝑑 (4.29) − (4.32) (4.34) and (3.6a) are hold. So, we obtain that the Hopf bifurcation 

occurs around the equilibrium point  𝐸6  at the parameter  c5 = 𝑐5
⋆  and the proof is complete.             ∎ 
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Numerical Simulation of system (2.2) [4] 
In this section, we confirmed our obtained results in the previous sections numerically by using Runge Kutta method along 

with predictor corrector method. Note that, we use turbo C++ in programming and matlab in plotting and then discuss our 

obtained results. The system (2.2) is studied numerically for different sets of parameters and different sets of initial points. 

The purpose of studying numerical simulations is to first check for existence of  the bifurcation near equilibrium points and 

secondly confirm our obtained analytical results. It is observed that, for the following set of hypothetical  parameters, system 

( 2.2 ) has a globally asymptotically stable positive equilibrium point as shown in: 

 

Fig.( 1 ) [4].:
𝑐1 = 0.5 , 𝑐2 = 0.4 , 𝑐3 = 0.4 , 𝑐4 = 0.5 , 𝑐5 = 0.3 , 𝑐6 = 0.01 , 𝑐7 = 0.1

 𝑐8 = 0.3 , 𝑐9 = 0.4 , 𝑐10 = 0.5, 𝑐11 = 0.01 , 𝑐12 = 0.2, 𝑐13 = 0.01, 𝑐14 = 0.1  
}              (5.1) 

 

System (2.2) is solved numerically for the data given in ( 5.1 ) with varying one parameter at each time which results the 

following outputs that represent the numerical bifurcation of system (2.2): 
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FIGURE 1: Time series of the solution of system (2.2) for the data given in (5.1) with different value of c11 : (A1) globally 

asymptotically stable of the positive equilibrium point E6 = (0.75 ,0.09  ,0.56 ,0.27) for c11 = 0.167, (A2) globally 

asymptotically stable of the  infected prey free equilibrium point  E5 = (0.819 ,0,0.541,0.094) for c11 = 0.169, while (A3) 

globally asymptotically stable of the disease free equilibrium point  E3 = (0.8 , 0 ,0.6 ,0) for c11 = 0.2 , (A4) globally 

asymptotically stable of the  infected predator free equilibrium point  E4 = (0.719 ,0.067,0.499,0) for c11 = 0.25 , (A5) 

globally asymptotically stable predator free equilibrium point  E2 = (0.22 , 0.52,0 ,0)  for  c11 = 0.6. 

Clearly, figure (1) shows that system (2.2) has a bifurcation at death rate of predator (c11) in the range above keeping other 

parameters as data given in (5.1) 

 

  

FIGURE 2: (B1) Time series of the solution of system (2.2)  approaches to the positive equilibrium point E6  at c6 = 0.123, 

while (B2) the time series of the trajectory is approaches asymptotically  to the infected prey free equilibrium point E5 =
(0.92 , 0, 0.24 , 0.39) for the data given in (5.1) with c6 =0.125,  

Clearly, figure (2) shows that system (2.2) has a bifurcation at the death rate of infected prey due to disease rate  c6 = 0.124  
keeping other parameters as data given in (5.1 ) . 

 
FIGURE 3 :(C1 ) the time series of the trajectory id approaches to the positive equilibrium point E6 at c4 = 0.96, while 

(C2) time series of the solution of system (2.2)  approaches asymptotically  to the infected prey free equilibrium point E5 =
(0.92 , 0, 0.24 , 0.39) for the data given in (5.1) with c4 =0.98.  

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

p
o
p
u
la

t
io

n

a

 

 

susceptible prey x

infected prey y

susceptible predator z

infected predator w

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
o
p
u
la

t
io

n

 

 

Susceptible prey x

Infected prey y

Susceptible predator z

Infected predator w

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
a

Time

p
o
p
u
la

ti
o
n

 

 

susceptible prey x

infected prey y

susceptible predator z

infected predator w

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

p
o
p
u
la

ti
o
n

 

 

Susceptible prey x

infected prey y

Susceptible predator z

infected predator w

B1 
B2 

C1  C2 



Prey-predator model with harvesting involving diseases in both populations 

580 

Clear, figure (3) shows that system (2.2) has a bifurcation at the maximum attack rate for infected prey 𝑐4 = 0.97  keeping 

other parameters as data given in (5.1 ) . 

 

Moreover system (2.2) is solved numerically for the data given in (5.1) with varying one parameter at each time and the 

obtained results are given in table (1), for more details see [4].  

 

TABLE 1: numerical behaviors of system ( 2.2) for the data given in ( 5.1) with varying one parameter at each time 

Range of parameter Numerical behavior of system (2.2) Bifurcation 

0 < 𝑐1 ≤ 0.37 
Approach to the infected prey free equilibrium point  𝐸5 

0.37 < 𝑐1 < 1.5 
Approaches to the positive equilibrium point 𝐸6 

0.3 < 𝑐2 < 1.45 
Approaches to the positive equilibrium point  𝐸6 

1.45 ≤ 𝑐2 
Approach to the infected prey free equilibrium point 𝐸5 

0 < 𝑐3 < 1.5 Approaches to the positive equilibrium point  𝐸6 
- 

0.4 < 𝑐4 < 0.97 Approaches to the positive equilibrium point  𝐸6 

0.98 < 𝑐4 < 1.5 
Approach to the infected prey free equilibrium point 𝐸5 

0.2 < 𝑐5 < 0.58 Approaches to the positive equilibrium point  𝐸6 

0.58 ≤ 𝑐5 < 1.5 Approach to the infected prey free equilibrium point 𝐸5 

0 <  𝑐6 ≤ 0.124 Approaches to the positive equilibrium point  𝐸6 

0.124 < 𝑐6 < 1 Approach to the infected prey free equilibrium point 𝐸5 

0 <  𝑐7 < 0.214 Approaches to the positive equilibrium point  𝐸6 

0.215 < 𝑐7 < 1 Approach to the infected prey free equilibrium point 𝐸5 

0 < 𝑐8 < 0.4 Approaches to the positive equilibrium point 𝐸6 

𝑐8 < 0.012 and 𝑐1 < 0.1 Approaches to the axial equilibrium point 𝐸1 

0 < 𝑐9 < 0.5 Approaches to the positive equilibrium point 𝐸6 
- 

0.1 < 𝑐10 < 0.35 Approach to the infected prey free equilibrium point 𝐸5 

0.35 < 𝑐10 < 0.95 Approaches to the positive equilibrium point 𝐸6 

0 <  𝑐11 < 0.168 Approaches to the positive equilibrium point 𝐸6 

0.168 ≤ 𝑐11 < 0.2 Approach to the infected prey free equilibrium point 𝐸5 

𝑐11 = 0.2 Approach to the disease free equilibrium point 𝐸3 

0.2 < 𝑐11 ≤ 0.31 Approach to the  infected predator free equilibrium point 𝐸4 

0.31 < 𝑐11 ≤ 1 Approaches to the predator free equilibrium point 𝐸2 

0 < 𝑐12 ≤ 0.3 Approaches to the positive equilibrium point 𝐸6 
- 

0 <  𝑐13 < 0.09 Approaches to the positive equilibrium point 𝐸6 

0.1 ≤ 𝑐13 ≤ 0.41 Approach to the infected prey free equilibrium point 𝐸5 

0.04 <  𝑐14 < 0.188 Approaches to the positive equilibrium point 𝐸6 

0.188 ≤ 𝑐14 ≤ 0.5 Approach to the infected prey free equilibrium point 𝐸5 
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DISCUSSION 

In this paper, we studied   the conditions of the occurrence 

of local bifurcation for example (saddle-node, transcritical 

and pitchfork) with particular emphasis on the Hopf  

bifurcation near of the positive equilibrium point of eco-

epidemiological by using the Sotomayrs theory and the 

Hopf bifurcation theory. 

Mathematical model involving SI infectious disease with 

harvest  in infected  population whereas ,this disease  cannot  

transmitted from the prey to the predator or  converse , but  

the disease   is  transmitted  in the same species by contact 

.The dynamical behavior of system (2.2) has been 

investigated local bifurcation as well as Hopf bifurcation. 

Further, system (2.2) has been solved numerically for 

different sets of initial points and different sets of 

parameters starting with the hypothetical set of data given 

by eq. (5.1) and the following observations are obtained. 

 

 The system within the set of parameters imposed does 

not have a periodic solution. 

 

 The parameters 𝑐3, 𝑐8,  𝑐9 and 𝑐12 which represent the 

half saturation, the conversion rate of the susceptible 

and infected predator  𝑐8 ,𝑐9 and 𝑐12 respectively did 

not play an important role in the bifurcation analysis. 

 

 As increasing the infection rate of prey and predator in 

the range  𝑐1 > 0.37 and 0.35 < 𝑐10 < 0.95  

respectively and  keeping the rest of parameters as in 

eq. (5.1), the solution of system (2.2) approaches to 

positive equilibrium point 𝐸6. However if 0.37 ≤ 𝑐1 <
1.5 and 0.1 < 𝑐10 ≤ 0.35 then the infected prey will 

face extinction then the trajectory transferred from 

positive equilibrium point to the equilibrium point 𝐸5, 

thus, the 𝑐1 = 0.37  and 𝑐10 = 0.35  parameter are a 

bifurcation points. 

 

 As, increasing the maximum attack rate of susceptible 

predator for susceptible and infected  prey in the range 

0.3 < 𝑐2 < 1.45  and 0.4 < 𝑐4 < 0.97   respectively 

and keeping the rest of parameters as in eq. (5.1), the 

solution of system (2.2) approaches to positive 

equilibrium point 𝐸6. However if 1.45 ≤ 𝑐2 and 

0.98 < 𝑐4 then the infected prey will face extinction 

then the trajectory transferred from positive 

equilibrium point to the equilibrium point 𝐸5, thus, the 

𝑐2 = 1.45 and 𝑐4 = 0.97 parameters are a bifurcation 

points. 

 

 As increasing the maximum attack rate of infected 

predator for infected  prey , harvesting rate and death 

of infected predator are due to disease, the  parameter 

in the range 0.2 < 𝑐5 ≤ 0.58  ,0 < 𝑐7 ≤ 0.214,  
0.04 <  𝑐14 < 0.188 and 0 <  𝑐13 < 0.09 respectively 

and keeping the rest of parameters as in eq. (5.1), the 

solution of system (2.2) approaches to positive 

equilibrium point 𝐸6. However if 0.58 < 𝑐5 , 0.215 <
𝑐7,0.188 ≤ 𝑐14 and  0.1 ≤  𝑐13 ≤ 0.041 then the 

infected prey will face extinction then the trajectory 

transferred from positive equilibrium point to the 

equilibrium point 𝐸5, thus, the 𝑐5 = 0.58 , 𝑐7 =

0.214 ,𝑐14 = 0.188 and 𝑐13 = 0.1 parameters are a 

bifurcation points. 

 

 As increasing the death rate of the infected prey due to 

disease in the range0 <  𝑐6 < 0.124 keeping the rest of 

parameters as in eq. (5.1), the solution of system (2.2) 

approaches to positive equilibrium point 𝐸6. However 

if 0.124 < 𝑐6 < 1 then the infected prey will face 

extinction then the trajectory transferred from positive 

equilibrium point to the equilibrium point 𝐸5, thus, the 

𝑐6 = 0.124  

 

 As the natural death rate of predator 𝑐11 decrease to 

0.168 keeping the rest of parameters as in  eq.(5.1), the 

solution of system (2.2) approaches to positive 

equilibrium E6, for more increasing in the range  

0.168 ≤ 𝑐11 < 0.2 causes extinction in the infected 

prey  and the system will approach the  infected prey  

free equilibrium point 𝐸5, further for  𝑐11 = 0.2 the 

solution of the system (2.2) approaches to the disease 

free equilibrium point 𝐸3 ;additional for 0.2 < 𝑐11 ≤
0.31  causes extinction in the infected predator  and the 

system will approach the  infected predator free 

equilibrium point𝐸4 , then more increasing of this 

parameter in the range  0.31 < 𝑐11 ≤ 1  the solution of 

the system (2.2) approaches to the predator free 

equilibrium point 𝐸2 thus, the 𝑐11 parameter when 

𝑐11 = 0.168 , 𝑐11 = 0.2  and 𝑐11 = 0.31 is a 

bifurcation point.  
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