

INTERNATIONAL JOURNAL OF SCIENCE AND NATURE

© 2004 - 2017 Society For Science and Nature(SFSN). All Rights Reserved

www.scienceandnature.org

IN VITRO REGENERATION OF JAMUN (SYZYGIUM CUMINII L.) CV. AJG-85

Prabhuling, G*, Rashmi, H and Babu A.G

Center for Horticulture Biotechnology, Directorate of Research University of Horticulture Sciences, Bagalkot 587104, Karnataka State, India. *Corresponding author email: gprabhuling@gmail.com

ABSTRACT

Studies on in vitro regeneration of jamun (Syzygium cuminii L.) cv. AJG-85 was carried out to optimize a mass multiplication protocol. Among the different explants tried, shoot tip was found best for establishment of aseptic culture. Surface sterilization of the explants was effectively achieved when 0.75% mercuric chloride was used for 5 minutes as it resulted in lower contamination and better culture establishment. Activated charcoal at 0.50% proved to be best in controlling phenolic browning but recorded lower establishment as compared to ascorbic acid at 150 mg/l which resulted in moderate browning and higher establishment. Among the different basal media studied half strength WPM showed best response with higher number of shoots per explants, length of shoots and number of leaves per shoot. Among the different growth regulators used for shoot proliferation, 2 mg/l BAP + 0.1 mg/l NAA recorded better shoot length, number of leaves and number of adventitious buds per explants. Due to short shoot length, elongation study was carried out using GA₃, where GA₃ at 2 mg/l showed better performance in terms of shoot length and number of leaves per shoot. Highest extent of in vitro rooting with significantly more number of roots, root length and number of roots were recorded with 2 mg/l IBA.

KEYWORDS: Jamun, Aseptic culture, Browning of medium, Shoot proliferation, In vitro rooting

INTRODUCTION

Jamun (Syzygium cuminii L.) is an important minor fruit belonging to the family Myrtaceae. It is tall and evergreen hardy tree suitable for marginal and wasteland. The fruit being highly nutritive and possess great medicinal value as such gained importance. They are good source of iron, minerals, sugars and proteins. Ripe fruit are highly relished and have a great demand in the season of availability. The fruits are tasty, pleasantly flavoured and are very much liked by the masses.⁷ Jamun is propagated by vegetative methods of like cutting and grafting which are cumbersome, time consuming, season bound with low multiplication rate. Hence, tissue culture propagation has advantages in ensuring extremely rapid rate of multiplication, year round production and requires limited space. It also gives disease free propagules and the superior genetic characteristics are unaltered. However, it is very difficult to culture explants derived from mature trees due to their recalcitrant nature, high incidence of microbial contamination, high levels of polyphenol

exudation and difficulty in root induction. The present investigation was, therefore, carried out to optimize protocol for mass multiplication of Jamun cv. AJG-85 through tissue culture.

MATERIALS & METHODS

Different explants were collected from field grown mother plant (Fig.1 and 2) grown at fruit orchard of KRC College of Horticulture, Arabhavi, University of Horticultural Sciences, Bagalkot, Karnataka. Explants tried includes shoot tip: explants from apical portion (1 cm) from the current season growth; single nodal segment: nodal segment of 1 cm length of current and previous season shoot; double nodal segment: segment of double nodes of 2-5 cm length of current and previous season shoots; lateral shoot bud: bud arising out of the lateral shoots which are green but mature and leaf petiole: leaf petiole of 1 cm length from green expanded leaves obtained from new flush.

FIGURE 1: Mother plant of Jamun cv. AJG-85

The twigs containing shoot tip as well as 3-4 nodes were taken from the mature tree and the plant materials were washed thoroughly in running water to remove debris. They were then washed 3-4 times with distilled water containing few drops of antiseptic solution. Explants were treated with a solution containing 500 mg/l cetrimide + 1000 mg/l carbendazim + 500 mg/l streptocycline for 25 minutes. They were rinsed 4-5 times with distilled water and incubated in solution containing 0.30 % sucrose and 0.01% ascorbic acid overnight. The different types of explants were excised and then washed repeatedly 4-5 times with sterile water under laminar air flow cabinet. Later explants were surface sterilized with 0.75 % mercuric chloride (HgCl₂) for 10 minutes and then washed repeatedly 4-5 times with sterile distilled water. These explants were used to carry out following experiments.

Effect of explants type on establishment of aseptic cultures:

Different explants viz., shoot tip, single nodal segment, double nodal segment, lateral shoot bud and leaf petiole were cultured on half strength MS media containing 3% sucrose, 100 mg/l ascorbic acid and 2 mg/l benzyl aminopurine (BAP). Effect of surface sterilants on establishment of aseptic cultures: Different surface sterilants such mercuric chloride, silver nitrate, ethanol, sodium hypochloride and carbendazim were used for disinfecting the shoot tips explants and cultured on halfstrength MS medium containing 30 g/l sucrose, 150 mg/l ascorbic acid and 2 mg/l BAP. Effect of anti-oxidant on culture establishment: Anti-oxidants used includes 100 and 150 mg/l ascorbic acid, 0.50 % activated charcoal and 1% polyvinylpyrrolidone (PVP). In all the treatments, half-strength MS medium supplemented with 3% sucrose and 2 mg/l BAP. Intensity of browning was recorded as per scale: 0 = no browning; + = low browning; + + =moderate browning and + + + = high browning. Effect of

different media strength on initiation and shoot proliferation: Different media strength used were 1/4 MS, 1/2 MS, full MS, 1/4 WPM, 1/2 WPM and full WPM. In all the treatments, media were supplemented with 3% sucrose and 2 mg/l BAP. Effect of cytokinins on shoot proliferation: Cultures were incubated on MS medium supplied with 2 mg/l BAP, 3 mg/l BAP, 2 mg/l BAP + 0.1 mg/l NAA, 2 mg/l BAP + 0.5 mg/l NAA, 3 mg/l BAP + 0.1 mg/l NAA, 3 mg/ 1 BAP + 0.5 mg/l NAA, 2 mg/l BAP + 0.5 mg/l Kinetin, 2mg/l BAP + 1 mg/l Kinetin, 3 mg/l BAP + 0.5 mg/l Kinetin and 3 mg/l BAP + 1 mg/l Kinetin. Medium was supplemented with full strength MS media + 3 % sucrose + 5 g/l agar + 150 mg/l ascorbic acid. Effect of GA₃ on shoot elongation: GA₃ was used at 1, 2, 4, 6 and 8 mg/l. Full strength MS medium containing 2 mg/l BAP + 35 mg/l adenine sulphate + 3 % sucrose and 4.5g/l agar was used. Effect of auxins on in vitro rooting: 1, 2, 5 and 10 mg/l IBA, 0.5, 1.5, 2 and 2.5 mg/l NAA, 1 mg/l IBA + 1 mg/l NAA and 5 mg/l IBA + 5 mg/l NAA were tried. 1/4th strength MS media + 3g/l activated charcoal, 4.5 g/l agar and 3% sucrose was used.

Completely randomized design (CRD) was employed for the experiments. The data in percentages were transformed to arc sine values for statistical analysis. The data were subjected to ANOVA as suggested by Panse and Sukhatme⁸. Critical difference values were tabulated at one per cent probability where "F" test was significant.

RESULTS & DISCUSSION

Response of different types of explants

Shoot tip showed better establishment 40.00 % than any other explants (Table 1) (Fig. 3). This may be probably due to presence of actively dividing meristematic cells and higher endogenous auxin level in shoot tips. Similar results were reported in Jackfruit (Rahman and Blake¹⁰) and Karonda (Rai and Misra¹¹).

FIGURE 3: Establishment of aseptic culture by shoot tip culture

Surface sterilization of shoot tip explants

HgCl₂ at 0.75 % for 5 minutes proved better compared to all other treatments as it recorded significantly minimum contamination 20.00 % and maximum establishment 53.33 % (Table 2). Pauling ⁹ opined that HgCl₂ is extremely poisonous due to high bleaching action of two chloride atoms and also mercuric ions which combine strongly with protein causing death of the organism. Though there was lesser contamination at higher concentration of HgCl₂, the survival percentage was less due to phytotoxicity. Similar observations were reported in coffee (Naidu et al⁶) and teak (Tiwari and Pandey¹³).

Effect of antioxidants on browning of medium:

Culturing of shoot tip explants on half strength MS medium supplemented with activated charcoal at 0.50 % resulted in minimum browning 0.00 % (Table 3) but recorded lower establishment 13.33 % as compared to ascorbic acid at 150 mg/l which exhibited moderate browning 40.00 % and higher establishment 40.00%. Charcoal retards the photo-oxidation of hydroxyl group of the polyphenols and hence prevent the formation of quinines thereby check the browning. These results are in accordance with earlier findings of Rajmohan and Mohankumaran¹² in jackfruit.

Role of media strength on initiation and shoot proliferation:

Half strength WPM found better in terms of the number of shoots/explants 11.80, length of shoot 2.22 cm and number of leaves/shoot 15.60 (Table 4) (Fig. 4). However, shoot thickness in quarter strength WPM (1.34 mm) and number of adventitious buds/explants was significantly higher in half MS medium (23.20). Similar results were also reported by Feng et al³ in ber and Lemos and Blake⁵ in *Annona* species.

Effect of growth regulators on shoot proliferation:

2 mg/l BAP + 0.1 mg/l NAA found better for increasing length of shoot 1.74 cm, number of leaves/shoot 14 and number of adventitious buds/ explant 16.5 (Table 5) (Figure 5). But 3 mg/l BAP + 0.5 mg/l Kinetin was found to be better in terms of number of shoots/explant (10.90) which was statistically on par with 2 mg/l BAP + 0.5 mg/l NAA (10.70), 2 mg/l BAP (9.30) and 2 mg/l BAP + 1 mg/l Kinetin (8.80). BAP as a source of cytokinin was found best as compared to kinetin in jackfruit (Adiga¹; Rahman and Blake¹⁰) and neem (Upadhyaya¹⁴).

Effect of GA₃ on shoot elongation:

The shoots were significantly longer 2.22 cm when GA_3 was used at 2 mg/l, with increase in number of shoots (10.3) and number of leaves (21.5) (Table 6) (Fig. 6). Belaizi et al² observed elongation of apple shoots with GA_3 at 1.50 μ M. Even though GA_3 had a significant influence on the number leaves produced, the leaves formed were small. This may be due to the reason that GA_3 brings about shoot elongation and thereby the leaves formed are extremely disturbed with no proper development.

TABLE 1: Effect of explants on establishment of aseptic culture in Jamun cv. 'AJG-85'

Treatments		% aseptic culture	% ontamination	Intensity of
				browning
T_1	Shoot tip	40.00 (39.14)*	46.67 (43.08)*	+++
T_2	Single node (Current season shoot)	20.00 (26.54)	40.00 (38.86)	+++
T_3	Single node (Mature shoot)	0.00 (0.26)	80.00 (63.44)	++
T_4	Double node (Current season shoot)	6.67 (14.95)	40.00 (38.86)	++
T_5	Double node (Mature shoot)	0.00 (0.26)	93.33(80.97)	+
T_6	Single node (Horizontal)	0.00 (0.26)	86.67 (76.75)	+++
T_7	Lateral shoot bud	0.00 (0.26)	86.67 (76.75)	+++
T_8	Leaf petiole	0.00 (0.26)	66.67 (59.91)	++
	S.Em±	1.25	9.14	-
	CD at 1%	3.74	27.41	-

*The values given in parenthesis are arc sine transformed values ($Sin^{-1} X/100$)

TABLE 2: Effect of surface sterilants on es	stablishment of shoot tip	o explant in Jamun cv. '	AJG-85'
---	---------------------------	--------------------------	---------

Treat	ments	% contamination	% establishment
T_1	HgCl ₂ 0.10 % for 5 minutes	40.00 (38.86)*	0.00 (0.26)*
T_2	HgCl ₂ 0.50 % for 5 minutes	80.00 (63.44)	20.00 (26.54)
T_3	HgCl ₂ 0.75 % for 5 minutes	20.00 (22.02)	53.33 (46.93)
T_4	AgNO ₃ 0.10 % for10 minutes	66.67 (55.00)	6.67 (14.95)
T_5	Ethanol 70 % for 30 seconds	86.67 (72.20)	0.00 (0.26)
T_6	Sodium hypochloride 6 % for 3 minutes	93.33 (80.97)	6.67 (14.95)
T_7	Carbendazim 1000 ppm + Streptocycline 100 for 30 minutes	100.00 (89.74)	0.00 (0.26)
T_8	Carbendazim 1000 ppm +Streptocycline 100 ppm for 1 hour	100.00 (89.74)	0.00 (0.26)
	S.E m±	6.63	0.76
	CD at 1%	19.89	2.30

Trea	atments	% browning	Intensity of browning	% establishment
T_1	Control	93.33 (80.97)*	+++	13.33 (21.42)*
T_2	Ascorbic acid 100 mg/l	100.00 (89.74)	++	6.67 (14.95)
T_3	Ascorbic acid 150 mg/l	40.00 (39.24)	++	40.00 (39.24)
T_4	Activated Charcoal 0.50 %	0.00 (0.26)	++	13.33 (21.40)
T_5	Activated Charcoal 1 %	0.00 (0.26)	++	13.33 (21.40)
T_6	PVP 2 mg/l	100.00 (89.74)	++	0.00 (0.26)
T_7	PVP 4 mg/l	80.00 (67.98)	+	0.00 (0.26)
T_8	PVP 6 mg/l	66.67 (55.00)	+	0.00 (0.26)
	S.Em±	6.69	-	0.36
	CD at 1%	20.06	-	1.08

*The values given in parenthesis are arc sine transformed values (Sin⁻¹ X/100)

In vitro regeneration of jamun

	Observations are taken at 0 week of transfer to the culture media								
Treatments		Number of adventitious	Number of	Length of	Number of	Shoot thickness			
		buds/explant	shoots/explant	shoot (cm)	leaves/ shoot	(mm)			
T_1	¼ MS	22.15	6.95	1.42	10.60	1.28			
T_2	1⁄2 MS	23.20	9.45	1.42	10.90	1.31			
T_3	Full MS	13.75	10.90	1.66	13.50	1.10			
T_4	¹ ⁄ ₄ WPM	11.60	9.95	1.72	12.55	1.34			
T_5	1⁄2 WPM	11.90	11.80	2.22	15.60	1.31			
T_6	Full WPM	7.15	7.80	1.80	10.40	1.24			
	S.Em±	1.08	0.76	0.04	0.66	0.03			
	CD at 1%	3.22	2.25	0.13	1.96	0.08			

TABLE 4:	Effect of	different	media	strength	on in	itiation	and s	shoot	prolifer	ation
Obs	ervations	are taken	at 6 th	week of	tranef	er to the	e cult	ture m	edia	

MS- Murashige and Skoog medium; WPM- Woody Plant Medium

FIGURE 4: Shoot proliferation in half strength WPM media

FIGURE 6: Shoot elongation induced by 2 mg/l GA₃ medium

FIGURE 5: Shoot proliferation on 3 mg/l BAP + 0.5mg/l Kinetin medium

FIGURE 7: In vitro rooting of microshoots on 2 mg/l IBA medim

	TABLE 5. Effect of cytokiniis of shoot prometation								
Treatments		Number of	Number of	Length of	Number of	Shoot			
		adventitious	shoots/	shoot	leaves/	thickness			
		buds/explant	explant	(cm)	shoot	(mm)			
T_1	BAP 2 mg/l	10.60	9.30	1.43	12.30	1.12			
T_2	BAP 3 mg/l	12.80	8.50	1.59	13.50	1.21			
T ₃	BAP 2 mg/l + NAA 0.1 mg/l	16.50	7.30	1.74	14.00	1.27			
T_4	BAP 2 mg/l + NAA 0.5 mg/l	14.30	10.70	1.20	10.80	1.27			
T_5	BAP 3 mg/l + NAA 0.1 mg/l	13.10	5.30	1.01	11.20	1.27			
T_6	BAP 3 mg/l + NAA 0.5 mg/l	18.40	8.30	1.66	12.90	1.22			
T_7	BAP 2 mg/l + Kinetin 0.5 mg/l	11.30	6.90	1.33	11.00	1.25			
T_8	BAP 2 mg/l + Kinetin 1 mg/l	7.90	8.80	1.09	11.50	1.26			
T ₉	BAP 3 mg/l + Kinetin 0.5 mg/l	8.98	10.90	1.16	9.86	1.29			
T ₁₀	BAP 3 mg/l + Kinetin 1 mg/l	15.39	7.81	1.58	14.21	1.28			
	S.Em±	0.58	0.58	0.05	0.58	0.16			
	CD at 1%	1.70	1.70	0.16	1.70	NS			

Observations are taken at 6th week of transfer to the culture media NS- Non significant

Treatments		Mean shoot	Mean number	Mean thickness	Mean no of
		length	of shoot	of shoots (mm)	leaves/
		(cm)			shoot
T_1	GA3@ 1 mg/l	1.94	12.60	1.11	22.50
T_2	GA ₃ @ 2 mg/l	2.22	10.30	1.11	21.50
T_3	GA ₃ @ 4 mg/l	1.64	3.85	1.34	14.00
T_4	GA ₃ @ 6 mg/l	1.55	7.10	1.33	9.50
T_5	GA ₃ @ 8 mg/l	1.77	8.95	0.97	16.00
	S.Em±	0.11	1.32	0.05	0.70
	CD at 1% 0.32		3.97	0.15	2.10

TABLE 6: Effect of GA₃ on shoot elongation

Observations are taken at 120 days of transfer to the media.

INDLE 7. LIIC	ct of auxilis of <i>m</i>	<i>nito</i> rooting n	i Jamun Ci	TABLE 7: Effect of auxins on <i>in vitro</i> rooting in Jamun <i>cv</i> . 'AJG-85'							
nent	Per cent rooting	Number of	Root	Number of	Number of						
		roots per	length	primary roots	secondary						
		shoots	(cm)	_	roots						
IBA 1mg/l	73.33 (59.21)*	1.28	1.47	1.28	0.87						
IBA 2 mg/l	86.67 (72.21)	1.49	1.67	1.51	0.83						
IBA 5mg/l	53.33 (46.92)	1.13	1.38	1.23	0.87						
IBA 10 mg/l	46.67 (43.08)	1.11	1.29	1.11	1.08						
NAA 0.5 mg/l	20.00 (22.01)	0.86	0.98	0.90	0.71						
NAA 1.5 mg/l	66.67 (59.92)	1.42	1.33	1.28	0.90						
NAA 2 mg/l	66.67 (59.92)	1.35	1.30	1.35	0.75						
NAA 2.5mg/l	26.67 (30.79)	0.97	0.98	0.97	0.71						
IBA 1mg/l + NAA 1 mg/l	26.67 (30.79)	0.91	1.01	0.91	0.71						
IBA 5mg/l + NAA 5 mg/l	66.67 (55.00)	1.30	1.07	1.22	0.71						
S.Em±	7.80	0.08	0.12	0.09	0.08						
CD at 1%	23.02	0.24	0.36	0.26	NS						
	IRBDE 7. Effe nent IBA 1mg/l IBA 2 mg/l IBA 5mg/l IBA 10 mg/l NAA 0.5 mg/l NAA 1.5 mg/l NAA 2 mg/l NAA 2.5mg/l IBA 1mg/l + NAA 1 mg/l IBA 5mg/l + NAA 5 mg/l S.Em± CD at 1%	Image Parallel 7. Effect of advins on <i>m</i> v nent Per cent rooting IBA 1mg/l 73.33 (59.21)* IBA 2 mg/l 86.67 (72.21) IBA 5mg/l 53.33 (46.92) IBA 10 mg/l 46.67 (43.08) NAA 0.5 mg/l 20.00 (22.01) NAA 1.5 mg/l 66.67 (59.92) NAA 2 mg/l 66.67 (59.92) NAA 2.5mg/l 26.67 (30.79) IBA 5mg/l + NAA 1 mg/l 26.67 (30.79) IBA 5mg/l + NAA 5 mg/l 66.67 (55.00) S.Em± 7.80 CD at 1% 23.02	Image: Problem for the second secon	Image: Prescription of the structure of additional additextent additextent additin additional additional additionadditio	Image: Prescription of the second state of addition of the value for the second state of the second sta						

*The values given in parenthesis are arc sine transformed values ($Sin^{-1} X/100$)

Effect of auxin on in vitro rooting:

Significantly maximum rooting 86.67 %, number of roots/shoot 1.49, root length 1.67 cm and number of primary roots 1.51 were observed with IBA at 2 mg/l (Table 7) (Fig. 7). These results are similar to the report of Kopp and Nataraja⁴ in tamarind. Among the two auxins used, IBA performed better than NAA.

CONCLUSION

In the present study a simple protocol for *in vitro* regeneration is standardized which could be used for rapid mass multiplication of healthy and disease free plantlets of Jamun cv. AJG-85.

REFERENCES

Adiga, D.J. (1996) Clonal propagation of jackfruit (*Artocarpus heterophyllus* Lam.) *cv*. Singapore jack through tissue culture. *Ph.D* (*Hort*) *Thesis* submitted to University of Agricultural Sciences, Bangalore.

Belaizi, M., Sngwan, R.S., David, A., Sangwan and Norreel B.S. (1989) Control of stages in the micropropagation of apple (*Pyrus malus*) *cv*. Golden Delicious, *Letters Botaniques*, France. **136**, 187-197.

Feng J., Yu, X.M. & Shang, X.L. (2010) Factors influencing efficiency of shoot regeneration in Zizipus jujube Mill. 'Huizao', *Plant Cell Tiss. Org. Cult.* **21**, 87-92.

Kopp, M.S. and Nataraja, K. (1990) *In vitro* plantlet regeneration from shoot tip cultures of *Tamarindus indica* L., *Indian J. of Forestry.* **13**, 30-33.

Lemos, E.E.P. and Blake, J. (1996) Micropropagation of juvenile and adult *Annona squamosa*, *Plant Cell Tiss. Org. Cult.* **46**, 77-79.

Naidu, M.M., Muniswamy B. and Sreenath H.L. (1993) Comparative efficacy of four disinfectants for raising aseptic leaf cultures of coffee. *J. Coffee. Res.*, **231**, 47-54.

Ochse, J.J., Soule J.J., Dijkman M. J. and Wehbero, C. (1961) *Tropical and Subtropical Agriculture*, Macmillan, New York.

Panse, V.G. and Sukhatme P.V. (1967) *Statistical Methods for Agricultural Workers*, Indian Council of Agricultural Research, New Delhi, pp. 152-161.

Pauling, L. (1955) *College Chemistry*, W. H. Freeman and Company, San Francisco, p. 578.

Rahman, M.A. and Blake J (1988) Factors affecting *in vitro* proliferation and rooting of shoots of jackfruit (*Artocarpus heterophyllus* Lam.), *Plant Cell Tiss. Org. Cult.* **12**, 75-80.

Rai, R. and Misra K.K. (2005) Micropropagation of karonda (*Carissa carandas*) through shoot multiplication, *Sci. Hort.* **103**, 227-232.

Rajmohan, K. and Mohankumaran, N (1988) Influence of explants source on the *in vitro* propagation of jack, *Agri. Res. J. Kerala.* **26**, 169-174.

Tiwari, S.K. and Pandey, R.K. (1995) A preliminary observation on *in vitro* propagation of teak (*Tectona grandis*) through tissue culture from excised apical and seedling explants, *J.Trop. Forestry.* **11**, 46-50.

Upadhyaya, M.N. (1995) Micropropagation of Indian neem (*Azadirachta indica*, A. Juss), *M.Sc. Thesis* submitted to the University of Agricultural Sciences, Bangalore.