

INTERNATIONAL JOURNAL OF SCIENCE AND NATURE

© 2004 - 2018 Society For Science and Nature(SFSN). All Rights Reserved

www.scienceandnature.org

ON KU-SEMIGROUPS

¹Fatema F.Kareem & ²Elaf R. Hasan

^{1, 2}Department of Mathematics, Ibn-Al-Haitham college of Education, University of Baghdad, Iraq. *Corresponding author email: fa_sa20072000@yahoo.com

ABSTRACT

The algebraic structure of semigroup with KU-algebra is called KU-semigroup and then we investigate some basic properties of this structure. We define the KU-semigroup and several examples are presented. Also, we study some types of ideals in this concept such as S-ideal, k- ideal and P-ideal. The relations between these types of ideals are discussed and few results for product S-ideals of product KU-semigroups are given. Furthermore, few results of some ideals in KU-semigroup under homomorphism are discussed.

KEY WORDS: KU-algebra; KU-semigroup; S-ideal; k- ideal; P-ideal.

INTRODUCTION

The notion of BCK and BCI- algebras are first introduced by Imai and Is'eki in 1966^[2,3]. BCI-algebra is a generalization of BCK-algebra. In 1993, Jun and Hong ^[5] introduced a new class of algebras related to BCIalgebras and semigroups, called a BCI- semigroup. For the convenience of study, Jun et al.[6,4] renamed the BCIsemigroup as the IS-algebra and studied further properties of these algebras. Several authors studied the algebraic structures with semigroups see^[1,7,8,12]. Prabpayak and Leerawat ^[13, 14] introduced a new algebraic structure which is called a KU-algebra. They gave the concept of homo morphisms of KU-algebras and investigated some related properties. In this paper, by combining KU-algebras and semi groups, we introduce the concept of KU-semigroups. We define some types of ideals in this concept such as Sideal, k- ideal and P-ideal. The relations between these types of ideals are discussed and few results for product Sideals of product KU-semigroups are given. Furthermore, few results of some ideals in KU-semigroup under homomorphism are discussed.

2. Preliminaries

In this section, we present some definitions and background about KU-algebra.

Definition 2.1.^[13] Algebra (X, *, 0) is called a KU-algebra if it satisfies the following axioms:

$$(ku_1) (x*y)*[(y*z))*(x*z)]=0$$

$$(ku_{\lambda}) \quad x * 0 = 0,$$

 $(ku_3) \quad 0 * x = x$,

 $(ku_4) x * y = 0$ and y * x = 0 implies $x \mathbb{N} y$ and $(ku_5) x * x = 0$.

On a KU-algebra X, we can define a binary relation \leq by putting $x \leq y \Leftrightarrow y * x = 0$. Then $(X, \frac{1}{2})$ is a partially ordered set and 0 is its smallest element. Thus (X, *, 0)

satisfies the following conditions. For all $x, y, z \in X$, we that

$$(ku_{1}) (y * z) * (x * z) \le (x * y)$$

$$(ku_{2^{\backslash}}) \ 0 \leq x$$
,

 $(ku_{3}) x \le y, y \le x$ implies x = y and

 $(ku_{A}) \quad y * x \leq x.$

Theorem 2.2 [9]. In a KU-algebra X. The following axioms are satisfied. For all $x, y, z \in X$,

- (1) $x \le y$ Imply $y * z \le x * z$,
- (2) x * (y * z) = y * (x * z), for all $x, y, z \in X$,
- $(3)\left((y \ast x) \ast x\right) \le y.$

Definition 2.3 [14]. A non-empty subset S of a KUalgebra (X,*,0) is called KU-sub algebra of X if $x * y \in S$ whenever $x, y \in S$.

Definition 2.4 [13]. A non-empty subset I of a KUalgebra (X, *, 0) is called an ideal of X if for any $x, y \in X$, then

- (i) $0 \in I$ and
- (ii) $x * y, x \in I$ imply that $y \ge I$.

Definition 2.5 [13]. Let I be a non empty subset of a KU-algebra X. Then I is said to be a KU-ideal of X, if $(I_1) \quad 0 \in I$ and $(I_2) \quad \forall x, y, z \in X$, $x*(y*z) \in I$ and $y \in I$ imply that $x*z \in I$.

Definition 2.6 [11]. A KU-algebra (X, *, 0) is said to be a KU-commutative if it satisfies: for all x, y in X, (y * x) * x = (x * y) * y, where $x \land y = (y * x) * x$, i.e. $x \land y = y \land x$.

Example 2.7 [11]. Let $X = \{0, a, b, c, d, e\}$ be a set, with the operation * defined by the following table:

KU-semigroups

*	0	а	b	с	d	e
0	0	а	b	с	d	e
a	0	0	b	c	b	с
b	0	а	0	b	а	d
c	0	а	0	0	а	а
d	0	0	0	b	0	b
e	0	0	0	0	0	0

Then (X, *, 0) is a KU-algebra and KU-commutative.

3. A KU-algebra with semigroups

Now, we give the definition and properties of a KU-algebra with semigroups.

Definition3.1. A KU-semigroup is a nonempty set X with two binary operations $*, \circ$ and constant 0 satisfying the following axioms

(I) (X,*,0) is a KU-algebra,

(II) (X, \circ) is a semigroup,

(III) The operation \circ is distributive (on both sides) over the operation *, i.e. $x \circ (y * z) = (x \circ y) * (x \circ z)$ and $(x * y) \circ z = (x \circ z) * (y \circ z)$, for all $x, y, z \in X$.

Example 3.2. Let $X = \{0, 1, 2, 3\}$ be a set. Define * - operation and \circ - operation by the following tables

*	0	1	2	3
0	0	1	2	3
1	0	0	0	2
2	0	2	0	1
3	0	0	0	0

0	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

By routine calculations, it is easy to show that $(X, *, \circ, 0)$ is a KU-semigroup

Proposition 3.3. Let $(X, *, \circ, 0)$ be a KU-semigroup. The following axioms are satisfied. For all $x, y, z \in X$, (1) $x \circ 0 = 0$ and $0 \circ x = 0$,

(2) If $x \le y$ imply $z \circ x \le z \circ y$ and $x \circ z \le y \circ z$,

(3) $x \circ (y \wedge z) = (x \circ y) \wedge (x \circ z)$ and $(x \wedge y) \circ z = (x \circ z) \wedge (y \circ z)$.

Proof. (1) $x \circ 0 = x \circ (0 * 0) = (x \circ 0) * (x \circ 0) = 0$ and $0 \circ x = (0 * 0) \circ x = (0 \circ x) * (0 \circ x) = 0$.

(2) Let $x \le y$, then we have y * x = 0. Now, $(z \circ y) * (z \circ x) = z \circ (y * x) = z \circ 0 = 0$, it follows that $z \circ x \le z \circ y$. Similarly, we can prove that $x \circ z \le y \circ z$.

(3) we have

$$x \circ (y \land z) = x \circ [(z * y) * y] = [x \circ (z * y)] * (x \circ y) = [(x \circ z) * (x \circ y)] * (x \circ y)$$

$$=(x \circ y) \wedge (x \circ z)$$

By the same way, we can prove that $(x \land y) \circ z = (x \circ z) \land (y \circ z)$.

Proposition 3.4 Let $(X, *, \circ, 0)$ be a KU-semigroup and $x, y, z \in X$. Then the following properties hold

- (i) $x \circ (0 * y) = (0 * x) \circ y = x \circ y$,
- (ii) If $x \circ y = 0$, then $x \circ (y * z) = x \circ z$,
- (iii) If $x \circ z = 0$, then $(x * y) \circ z = y \circ z$,

(iv)
$$x \circ [y * (0 * z)] = (x \circ y) * [0 * (x \circ z)]$$
 and $[y * (0 * z)] \circ x = (y \circ x) * [0 * (z \circ x)].$

Proof. Clear.

In the following, we define a new concept which is called a strong KU-semigroup.

Definition 3.5. Let $(X, *, \circ, 0)$ be a KU-semigroup. If $x * y = (y \circ x) * y$, for all $x, y \in X$, then $(X, *, \circ, 0)$ is called a *strong* KU-semigroup.

Definition 3.6. an element *e* is called a *unity* in a KU-semigroup if $e \circ x = x \circ e = x$, for all $x \in X$. If X is a *strong* KU-semigroup with a unity *e*, then *e* is the greatest element in X, since $e * x = (x \circ e) * x = x * x = 0$, for all $x \in X$.

Theorem 3.7. Let $(X, *, \circ, 0)$ be a *strong* KU-semigroup. Then the following properties hold, for all $x, y \in X$,

(1) $x \circ y \leq y$,

- (2) $x \le y \Leftrightarrow x \le x \circ y$,
- (3) $y * (x \circ y) = (y * x) \circ y.$

Proof. (1) Let $x, y \in X$

 $y * (x \circ y) = [(x \circ y) \circ y] * (x \circ y) = [x \circ (y \circ y)] * (x \circ y) = x \circ [(y \circ y) * y]$

 $= x \circ (y \ast y) = x \circ 0 = 0.$

Hence $x \circ y \leq y$.

(2) if $x \le y$, then y * x = 0. It follows that $(x \circ y) * x = 0$, hence

 $x \le x \circ y$, conversely it is clear.

(3) Let $x, y \in X$, we have

$$y * (x \circ y) = [(x \circ y) \circ y] * (x \circ y) = [(x \circ y) * x)] \circ y = (y * x) \circ y$$

Theorem3.8. Let $(X, *, \circ, 0)$ be a strong KU-semigroup and (x * y) * y = (y * x) * x. Then $x \land y = x \circ y$.

Proof. Let $x, y \in X$, we have $x \wedge y = (y * x) * x = [(x \circ y) * x] * x$ $= [x * (x \circ y)] * (x \circ y) = x \circ [e * y] * (x \circ y)$ $= (x \circ 0) * (x \circ y) = 0 * (x \circ y) = (x \circ y).$

4. Some types of ideals in a KU-semigroup

In this part, we introduce some types of ideals in a KU-semigroup and we prove that some intresting properties. **Definition 4.1.** A nonempty subset A of X is called a sub KU-semigroup of X, if $x * y, x \circ y \in A$, for all $x, y \in A$. **Definition 4.2.** A non empty subset A of a KU-semigroup X is called an S-ideal of X if

i) A is an ideal of X,

ii) For all $x \in X$, $a \in A$, we have $x \circ a \in A$ and $a \circ x \in A$.

Example 4.3. Let $X = \{0, a, b, c\}$ be a set. Define * - operation and \circ - operation by the following tables

*	0	a	b	с	0	0	a	b	
0	0	a	b	с	0	0	0	0	
a	0	0	0	с	a	0	a	0	
b	0	a	0	с	b	0	0	b	
с	0	0	0	0	с	0	a	b	

Then $(X, *, \circ, 0)$ is a KU-semigroup and $\{0, b\}$ is an S-ideal of a KU-semigroup.

Theorem 4.4. In a KU-semigroup X. Any *S-ideal* of X is a *sub* KU-*semigroup* of X and the converse is not true. **Proof.** Let A be an *S*-ideal of X. Then $0 \in A$ and y * (x * y) = 0, for all $x, y \in X$. Thus for $x, y \in A$ we have $y * (x * y) \in A$, which implies $x * y \in A$. And by Theorem 3.7 (1) we have, for all $x, y \in X$ $x \circ y \leq y \Longrightarrow y * (x \circ y) = 0$. It follows that for $x, y \in A$ and $0 = y * (x \circ y) \in A$ implies that $x \circ y \in A$. Hence A is a *sub* KU-*semigroup*.

KU-semigroups

The converse of this Theorem, it is easy to show that in example 4.3 $B = \{0, a\}$ is a sub KU-semigroup but not S-ideal, since $a * b = 0 \in B$ and $a \in B$ but $b \notin B$.

Definition 4.5. A non empty subset A of a KU-semigroup X is called an *k-ideal* of X if

i) A is an KU-ideal of X,

ii) For all $x \in X$, $a \in A$, we have $x \circ a \in A$ and $a \circ x \in A$.

Theorem 4.6. Let X be a KU-semigroup. A non empty subset A of a KU-semigroup X is an k-ideal of X if and only if A is an S-ideal of X.

Proof. Let A be an k-ideal in X; it is clear that $0 \in A$. Since for any $x, y, z \in X$, $(x*(y*z)) \in A, y \in A \Longrightarrow (x*z) \in A$, then by put $x \ \mathbb{N} \ \mathbf{0}$, we obtain $(y*z) \in A, y \in A \Longrightarrow z \in A$. Hence I is an S-ideal of X.

Conversely, let A be an S- ideal of X, then $0 \in A$. Now, if $(x * (y * z)) \in A, y \in A$, then (by Th.2.2 (2))

 $(y * (x * z)) \in A$ and $y \in A$, since A is an S-ideal of X, thus $(x * z) \in A$, therefore A is an k-ideal of X.

Combining Theorem 4.4 and Theorem 4.6, we have the following corollary.

Corollary 4.7. Any k -ideal of a KU-semigroup X is a sub KU-semigroup.

Definition 4.8. A non empty subset A of a KU-semigroup X is called an *P*-ideal of X if

(p₁) For any $x, y, z \in X$, $z * (x * y) \in A$ and $z * x \in A \rightarrow z * y \in A$.

(p₂) For all $x \in X$, $a \in A$, we have $x \circ a \in A$ and $a \circ x \in A$.

Example 4.9. Let $X = \{0, a, b, c\}$ be a set. Define * -operation and \circ -operation by the following tables

*	0	a	b	С
0	0	a	b	с
a	0	0	a	с
b	0	0	0	с
с	0	a	b	0

0	0	a	b	С
0	0	0	0	0
a	0	0	0	0
b	0	0	b	с
с	0	0	с	b

Then $(X, *, \circ, 0)$ is a KU-semigroup and $\{0, a, b\}, \{0, c\}$ are *P*-ideals of a KU-semigroup.

Lemma 4.10. In a KU-semigroup X. Any *P*-ideal is an *S*-ideal.

Proof. Let A be an *P*-ideal of X. we put z = 0 in Definition 4.8. (p₁) to obtine the result.

Propositon 4.11. Let A_1 and A_2 be two S-ideals of a KU-semigroup X, then $A_1 \cap A_2$ is an S-ideal of X.

Proof. Let A_1 and A_2 be two S-ideals of X, for any $x \in X$ and $a \in A_1 \cap A_2 \Rightarrow a \in A_1, a \in A_2$. Then $x \circ a, a \circ x \in A_1$ and $x \circ a, a \circ x \in A_2$ implies that $x \circ a, a \circ x \in A_1 \cap A_2$

Now, let $x * y \in A_1 \cap A_2$ and $x \in A_1 \cap A_2$, then $x * y \in A_1$, $x \in A_1$ and $x * y \in A_2$, $x \in A_2$ and since A_1 , A_2 are S-ideals of X implies that $y \in A_1$ and $y \in A_2$. Hence $y \in A_1 \cap A_2$, it follows that $A_1 \cap A_2$ is an S-ideal of X.

Proposition 4.12. Let A_1 and A_2 be two S-ideals of a KU-semigroup, then $A_1 \cup A_2$ is an S-ideal of X if $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$.

Proof. Suppose A_1 and A_2 be two S-ideals of a KU-semigroup X that without loss of generality we may assume that $A_1 \subseteq A_2$, then $A_1 \cup A_2 = A_2$

Since A_2 is an S-ideal, So $A_1 \cup A_2$ is an S-ideal.

Similarly, if $A_2 \subseteq A_1$, then $A_1 \cup A_2 = A_1$ and Since A_1 is an S-ideal, So $A_1 \cup A_2$ is an S-ideal.

Now, the product of two ideals in a KU-semigroup is given in the following definition

Definition 4.13. Let A_1 and A_2 be two an S-ideals in a KU-semigroup X. The product $A_1 \times A_2 = \{(a,b): a \in A_1, b \in A_2\}$ and the binary operations " \circ " and "*" on $A_1 \times A_2$ are define by the following : for all (a_1,b_1) , $(a_2,b_2) \in A_1 \times A_2$.

 $(a_1,b_1) \circ (a_2,b_2) = (a_1 \circ a_2, b_1 \circ b_2),$

 $(a_1,b_1) * (a_2,b_2) = (a_1 * a_2, b_1 * b_2).$

Proposition 4.14. Let A_1 and A_2 be two S-ideals of KU-semigroup X. Then $A_1 \times A_2$ is an S-ideal of $X \times X$.

Proof. Let $(x_1, x_2) \in X \times X$ and $(a_1, a_2) \in A_1 \times A_2$.

Then $(x_1, x_2) \circ (a_1, a_2) = (x_1 \circ a_1, x_2 \circ a_2)$. Since $x_1 \circ a_1 \in A_1$ and $x_2 \circ a_2 \in A_2$

Then $(x_1 \circ a_1, x_2 \circ a_2) \in A_1 \times A_2$. So $(x_1, x_2) \circ (a_1, a_2) \in A_1 \times A_2$ and by the same way, we prove that $(a_1, a_2) \circ (x_1, x_2) \in A_1 \times A_2$

Now,

Let $(x * y) \in A_1 \times A_2$ and $x \in A_1 \times A_2$, where $x = (x_1, x_2)$, $y = (y_1, y_2) \in X \times X$ If $[(x_1, x_2) * (y_1, y_2)] \in A_1 \times A_2$ and $(x_1, x_2) \in A_1 \times A_2$. Then $(x_1 * y_1, x_2 * y_2) \in A_1 \times A_2$ and $(x_1, x_2) \in A_1 \times A_2$, it follows that $x_1 * y_1 \in A_1$, $x_2 * y_2 \in A_2$ and $x_1 \in A_1$, $x_2 \in A_2$. Then $y_1 \in A_1$ and $y_2 \in A_2$ [Since A_1, A_2 are two S-ideals], So $(y_1, y_2) \in A_1 \times A_2$, then $\in A_1 \times A_2$. Hence $A_1 \times A_2$ is an S-ideal.

5- homomorphism of KU-semigroup

Let X and X' be two KU-semigroups. A mapping $\phi: X \to X'$ is called a KU-semigroup homomorphism if $\phi(x * y) = \phi(x) * \phi(y)$ and $\phi(x \circ y) = \phi(x) \circ \phi(y)$, for all $x, y \in X$. The set $\{x \in X | \phi(x) = 0\}$ is called the kernel of ϕ and denote by ker ϕ . Moreover, the set $\{\phi(x) \in X' | x \in X\}$ is called the image of ϕ and denote by $im \phi$.

Proposition 5.1. Let $\phi: X \to X'$ be a KU-semigroup homomorphism. Then for all $x, y \in X$.

i) $\phi(0) = 0'$.

ii) $x \le y$ imply $\phi(x) \le \phi(y)$.

iii) $\phi(x \wedge y) = \phi(x) \wedge \phi(y)$.

Proof: (i) Suppose that x is an element of X. Then

 $\phi(0) = \phi(x * x) = \phi(x) * \phi(x) = 0$

(ii) Let $x \le y$. Then we have y * x = 0. Thus we have

 $0 = \phi(0) = \phi(y * x) = \phi(y) * \phi(x), \text{ and so } \phi(x) \le \phi(y).$

 $(\text{iii})\phi(x \wedge y) = \phi((y * x) * x) = \phi(y * x) * \phi(x) = [\phi(y) * \phi(x)] * \phi(x) = \phi(x) \wedge \phi(y).$

Proposition 5.2. Let $\phi: X \to X'$ be a KU-semigroup homomorphism and $\gamma^{-1}(0) = \{0\}$. Then if $\phi(x) \le \phi(y)$ imply $x \le y$.

Proof: If $\phi(x) \le \phi(y)$, then we have $\phi(y) * \phi(x) = \phi(y * x) = 0$ and so y * x is an element of $\psi^{-1}(0)$. Hence y * x = 0, it follows that $x \le y$.

Proposition 5.3. Let $\phi: X \to X$ be a KU-semigroup homomorphism. Then ker ϕ is an S-ideal of X.

Proof. Let $\phi: X \to X'$ be a KU-semigroup homomorphism and $x, y \in X$ such that $x * y \in \ker(\phi)$ and $x \in \ker\phi$, so $\phi(x * y) = 0$ and $\phi(x) = 0$, it follows that

 $\phi(x) * \phi(y) = 0$ and $\phi(x) = 0$, then $0 * \phi(y) = 0$ imply $\phi(y) = 0$ and

 $y \in ker\phi$. Hence $ker\phi$ is an ideal of KU-algebra.

Now, let $x \in X$ and $a \in \ker \phi$ so $\phi(a) = 0$, then

 $\phi(x \circ a) = \phi(x) \circ \phi(a) = \phi(x) \circ 0 = 0$. Hence $x \circ a \in ker\phi$ and

 $\phi(a \circ x) = \phi(a) \circ \phi(x) = 0 \circ \phi(x) = 0$. Hence $a \circ x \in ker\phi$. So ker ϕ is an S-ideal of KU-semigroup.

Proposition 5.4. Let $\phi: X \to X'$ be a KU-semigroup epimorphism and A be an

S-ideal in X. Then $\phi(A)$ is an S-ideal in X.

Proof. Let A be an S-ideal of , and suppose that $\phi(x), \phi(y) \in \phi(A)$ for some $x, y \in A$ such that $\phi(x) * \phi(y) \in \phi(A)$ and $\phi(x) \in \phi(A)$ to prove $\phi(y) \in \phi(A)$.

Since ϕ is a homomorphism, then $\phi(x) * \phi(y) = \phi(x * y)$ and since $\phi(x) \in \phi(A)$

Thus $x * y \in A$, $x \in A \rightarrow y \in A$ [since A is an ideal]

Therefore $\phi(y) \in \phi(A)$. Hence $\phi(A)$ is an ideal in X'.

Now, $\phi(a) \in \phi(A)$ and $y \in X$ where $a \in A$.

Since ϕ onto, then there exists $x \in X$ such that $\phi(x) = y$. To prove $y \circ \phi(a) \in \phi(A)$

Since $\forall x \in X$ and $\in A$, we have $x \circ a \in A$ and $a \circ x \in A$ [A is an S-ideal]. So $\phi(x \circ a) \in \phi(A)$, and $\phi(a \circ x) \in \phi(A)$. Hence $\phi(x \circ a) = \phi(x) \circ \phi(a) = y \circ \phi(a) \in \phi(A)$ and $\phi(a \circ x) = \phi(a) \circ \phi(x) = \phi(a) \circ y \in \phi(A)$. Then $\phi(A)$ is an S-ideal in X'.

Theorem 5.5. Let $\phi: X \to X'$ be a KU-semigroup homomorphism. If A is an S-ideal of X', then $\phi^{-1}(A) = \{x \in X | \phi(x) \in A\}$ is an S-ideal of X containing ker ϕ .

Proof- Let $\phi: X \to X'$ be a KU-semigroup homomorphism and $x, y \in X$ such that

 $x * y \in \phi^{-1}(A)$ and $x \in \phi^{-1}(A)$, then $\phi(x) * \phi(y) = \phi(x * y) \in A$ and $\phi(x) \in A$. and since A is an S-ideal, it follows that $\phi(y) \in A$. That is $y \in \phi^{-1}(A)$, therefore $\phi^{-1}(A)$ is an ideal of X. Moreover $\{0\} \subseteq A$ implies that $ker\phi = \phi^{-1}(\{0\}) \subseteq \phi^{-1}(A)$.

Now, Suppose that A is an S-ideal of X'. Let $x \in X$ and $y \in \phi^{-1}(A)$, then

 $\phi(y) \in A$ and $\phi(x \circ y) = \phi(x) \circ \phi(y) \in A$ and $\phi(y \circ x) = \phi(y) \circ \phi(x) \in A$. Hence $x \circ y, y \circ x \in \phi^{-1}(A)$ and then $\phi^{-1}(A)$ is an S-ideal of X containing ker ϕ .

Proposition 5.6. Let $\phi: X \to X'$ be a KU-semigroup epimorphism and *A* be an *P*-ideal in *X*. Then $\phi(A)$ is an *P*-ideal in *X'*.

Proof. Let *A* be an *P*-ideal of .

Now, Suppose that $\phi(x), \phi(y), \phi(z) \in \phi(A)$ for some $x, y, z \in A$ such that

 $\phi(z) * [\phi(x) * \phi(y)] \in \phi(A) \text{ and } (z) * \phi(x) \in \phi(A) .$

Since ϕ is a homomorphism, then $\phi[z * (x * y)] \in \phi(A)$ and $\phi(z * x) \in \phi(A)$

Thus $*(x * y) \in A$, $z * x \in A \rightarrow z * y \in A$ [since A is P-ideal]

Therefore $\phi(z) * \phi(y) = \phi(z * y) \in \phi(A)$.

Now, let $\phi(a) \in \phi(A)$ and $y \in X'$, where $a \in A$.

Since ϕ onto, then there exists $x \in X$ such that $\phi(x) = y$. To prove $y \circ \phi(a) \in \phi(A)$

Since $\forall x \in X$ and $\in A$, we have $x \circ a \in A$ and $a \circ x \in A$ [A is an P-ideal]. So $\phi(x \circ a) \in \phi(A)$, and $\phi(a \circ x) \in \phi(A)$. Hence $\phi(x \circ a) = \phi(x) \circ \phi(a) = y \circ \phi(a) \in \phi(A)$ and $\phi(a \circ x) = \phi(a) \circ \phi(x) = \phi(a) \circ y \in \phi(A)$. Hence $\phi(A)$ is an P-ideal in X'.

CONCLUSION

A new concept of KU-algebras which is called a KUsemigroup. This concept we obtained by a combining KU-algebras and semigroups and discussed few properties of this concept and investigate some related results. Moreover, some types of ideals in KU-semigroup are studied and the product of *S*-ideals to a KU-semigroup is established. The notion of a homomorphism of a KUsemigroup is discussed. The main purpose of our future work is to study of a fuzzy KU-semigroup and a generlazation of a fuzzy KU-semigroup such as a bipolar of a fuzzy KU-semigroup and interval value of a fuzzy KU-semigroup. Also, we can introduce the notion of graph for a KU-semigroup.

ACKNOWLEDGEMENT

The authors are thankful to the referees for a careful reading of the paper and for valuable comments and suggestions.

REFERENCES

- [1]. S. S. Ahn and Y. H. Kim, On BE-semigroups, Int. J. Math. Math. Sci. (2015) 8 pages
- [2]. Y. Imai and K. Iseki, On axiom system of propositional calculi, XIV, Japan Acad. (1966) 19-22

- [3]. K. Iseki, algebra related with a propositional calculus, Proc.Japan.Acad.42 (1966) 351-366.
- [4]. Y. B. Jun, Roh E.H. and X.L. Xin, I-ideals generated by a set in IS-algebras, Bull Kcrean Math.Soc., 35 (1998) 615-624.
- [5]. Y. B. Jun, S. M. Hong, BCI-semigroups, Honam math. (1993).
- [6]. Y. B. Jun, X. I. Xin, and E. H. Roh, Aclass of algebras related to BCI-algebras and semi groups Soochow J. Math., 4 (24) (1998) 309-321.MR200b.06056.
- [7]. K. H. Kim, On structure of KS-semigroups, Int. Math.Forum 1(2) (2006), 67-76.
- [8]. K. H. Kim, A note on HS-algebras, Int. Math.Forum 6(31) (2011), 1529-1534.
- [9]. S.M. Mostafa, M.A. Abd-Elnaby and M.M.M. Yousef, Fuzzy ideals of KU-Algebras, International Mathematical Forum, 6(63) (2011) 3139-3149.
- [10]. S. M. Mostafa and F. F. Kareem, N-fold commutative KU-algebras, International Journal of Algebra, 8 (6) (2014), 267-275.
- [11]. S. M. Mostafa, A.E. Radwan, F.A. Ibrahem and F.F. Kareem, The graph of a commutative KU-algebra, Algebra Letters 1 (2015) 1-18.
- [12]. J. K. Park, W.H. Shim and E.H. Roh, On isomorphism theorems in IS-algebras, Soochow Journalof Mathematics 27(2) (2001), 153-160.
- [13]. C. Prabpayak and U. Leerawat, On ideals and congruence in KU-algebras, scientia Magna Journal, 5(1) (2009), 54-57.
- [14]. C. Prabpayak and U. Leerawat, on isomorphisms of KU-algebras, scientiamagna journal, 5(3) (2009), 25-31.