GERMINATION OF ATEMoya (Annona Cherimola Mill. x A. squamosa L.) CV. GEFNER SEEDS SUBJECTED TO TREATMENTS WITH PLANT GROWTH REGULATORS

João Filgueiras Braga1*, Gisela Ferreira2, Sheila de Pinho3, Lúcia F. Braga3 & Marcilio P. Sousa3
1 Department of Agronomy Federal University of Mato Grosso – UFMT Campus de Sinop, MT. State, Brazil. Avenida Alexandre Ferronato, 1200
2 Agronomist, Department of Botany of Bioscience Institute, UNESP – Campus de Botucatu, São Paulo State, Brazil.
3 Biologists Mato Grosso State University - UNEMAT, 78580-000, Alfa Floresta Municipality, Mato Grosso State, Brazil.
4Part of the first author’s Doctoral thesis

ABSTRACT

The aim of this study was to evaluate the germination of atemoya (Annona cherimola Mill. x A. squamosa L.) cv. Gefner seeds treated with plant growth regulators. Experimental design was completely randomized, with four replicates of 25 seeds per plot and 40 treatments. Seeds were subjected to GA3 (0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, and 3000 mg L\(^{-1}\) a.i.), GA4+7 + N-(phenylmethyl)-1H-purine-6-amine (0, 12.5, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 1500, 2000, 2500, and 3000 mg L\(^{-1}\) a.i.) and CK+GA+AX (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 mL Kg\(^{-1}\) seed). The germination percentage and speed index (GSI), besides the percentage of dormant and dead seeds and normal and abnormal seedlings were subjected to variance and regression analyses. The estimated concentration of 520 mg L\(^{-1}\) GA3 led to 89.44% germination and 5.21 GSI (548.80 mg L\(^{-1}\) estimated concentration). GA4+7 + N-(phenylmethyl)-1H-purine-6-amine led to 95.45% germination (329.14mg L\(^{-1}\)) and 3.97 GSI (332.99 mg L\(^{-1}\)). CK+GA+AX led to 50.78% germination (2.77 mL Kg\(^{-1}\)) and 2.88 GSI (2.97 mL Kg\(^{-1}\)). GA3 and GA4+7 + N-(phenylmethyl)-1H-purine-6-amine were more effective than CK+GA+AX in the germinative process of atemoya cv. Gefner seeds.

KEYWORDS: Annonaceae, gibberellin, cytokinin, auxin, seed dormancy.

INTRODUCTION

The family Annonaceae includes around 135 genera and 2500 species, some of which are commercially important, such as sweetsop (Annona squamosa L.), atemoya (A. cherimola Mill. x A. squamosa L.) and soursop (A. muricata L.) (Donadio, 1997, Chartro et al., 2004). Annonaceous plants are mostly propagated through grafting. Rootstocks for atemoya have been originated from seeds of several species, even from atemoya itself due to problems of incompatibility with certain species such as pond apple (A. glabra L.), mountain soursop (A. montana Macf.), soursop (A. muricata), and biriba (Rollinia mucosa) (Kavati, 1992, Stenzel et al., 2003).

Seedling production begins, therefore, from rootstock seed germination, which is slow and uneven due to the immature embryo of slow development, besides the absicic acid concentration and the tegument impermeability. The effect of GA3 on rootstock formation time (Bezerra and Lederman, 1997). Thus, the use of plant growth regulators may improve the germination of these seeds. To break dormancy and/or increase the germinative process, the hormonal balance between germination inhibitors, such as absicic acid (ABA), and promoters, such as GA3, must be changed (Weaver, 1997, Kigel and Galili, 1995). Gibberellins (GAs) activate the embryonic vegetative growth, weakens the endosperm layer that involves the embryo and restricts its growth, and mobilizes the energetic reserves from the endosperm of cereals (Bewley, 1997, Bradford et al., 2000, DeCastro and Hilhorst, 2004, Taiz and Zeiger, 2006). Cereal embryo synthesizes and releases GA during the germination, which leads to the production and/or secretion of several hydrolytic enzymes involved in the solubilization of reserves, including α and β-amylase (Taiz and Zeiger, 2006). Cytokinins induce cell division, participating in cell elongation and differentiation, especially when they interact with auxins (Arteca, 1995). Copeland and McDonald (1995) stated that the action of kinetin on germination is related to the membrane permeability. Auxins act on the plasticity of the cell wall, providing the latter with irreversible elongation (Arteca, 1995, Taiz and Zeiger, 2006).

Plant growth regulators may act alone or combined with other regulators (Davies, 2004). In this case, the mixture of two or more plant growth regulators or between plant growth regulators and other substances is named biostimulant (Vieira and Castro, 2001).

Pawshe et al. (1997) applied 100 mg L\(^{-1}\) GA3 on A. squamosa L. seeds and obtained 56% germination. Valenzuela and Osório (1998) reported the highest mean germination (55.4%) of A. reticulata seeds by using 10000 mg L\(^{-1}\) GA3. Smet et al. (1999) detected the highest germination value (74.5%) when 1000 mg L\(^{-1}\) GA3 were applied on A. cherimola Mill seeds. In studies with Annona squamosa L., Ferreira et al. (2002) obtained 77% germination under 250 mg L\(^{-1}\) GA3, whereas Stenzel et al. (2003) detected 75.0% germination under 50 mg L\(^{-1}\) GA3. As regards atemoya seeds, Stenzel et al. (2003) reported 67.5% germination for the cultivar Gefner, 36.25% for PR-1 and 61.25% for PR-3 after the application of 50 mg L\(^{-1}\), in addition, Oliveira (2004) obtained 80% germination.
Germination of *Annona cherimola* Mill. x *A. squamosa* L. seeds treatments with plant growth regulators

by using 500 mg L\(^{-1}\) GA\(_3\) on seeds of atemoya cv. Gefner. Silva et al. (2007) detected 43% germination when 500μM GA\(_{4+7}\) were applied on *A. crassiflora* seeds. This study aimed to evaluate the germination of atemoya (*A. cherimola* Mill. x *A. squamosa* L.) cv. Gefner seeds treated with GA\(_3\), GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine and CK+GA+AX.

MATERIAL AND METHODS

The experiment was carried out in the Seed Lab of the Department of Plant Production, School of Agronomical Sciences (FCA), São Paulo State University (UNESP), Botucatu Campus, São Paulo State (SP), Brazil. Atemoya (*A. cherimola* Mill. x *A. squamosa* L.) cv. Gefner fruits were obtained in a commercial production area from Angatuba Municipality, SP. The seeds were extracted, washed in tap water, immersed in hypochlorite (10%) for 1h, washed in autoclaved distilled water, immersed in oxytetracycline (100 mg L\(^{-1}\)) for 20 min, and washed again. After the phytosanitary treatment, the seeds were kept on a laboratory bench for seven days and then stored in a refrigerator for 15 days until the beginning of the experiments.

Experimental design was completely randomized, with 40 treatments and four replicates of 25 seeds per plot. Treatments consisted of the following plant growth regulators: GA\(_3\) (0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, and 3000 mg L\(^{-1}\) a.i.), GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine (0, 12.5, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 1500, 2000, 2500, and 3000 mg L\(^{-1}\) a.i.), and CK+GA+AX (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 mL kg\(^{-1}\) seed).

The commercial product Pro-Gibb® was used as source of GA\(_3\) and was composed of 10% gibberellic acid (GA\(_3\)) and 90% inert ingredients in the form of soluble powder. GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine was provided by the biostimulant Promalin® and was composed of a mixture of GA\(_3\) + GA\(_7\) (1.8%) + N-(phenylmethyl)-1H-purine-6-amine (1.8%) and 96.4% inert ingredients. The biostimulant Stimulate® was used as source of CK+GA+AX and was composed of kinetin (90 mg L\(^{-1}\), 0.009%), gibberelic acid (50 mg L\(^{-1}\), 0.005%), indolebutyric acid (50 mg L\(^{-1}\), 0.005%) and inert ingredients (99.981%).

Seeds were treated with the plant growth regulators GA\(_3\) and GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine by immersion for 36h (Ferreira et al., 2006), under constant aeration. The mixture CK+GA+AX was directly applied on the seeds in plastic bags, which were vigorously shaken for 2 min in order to homogenize the adsorption of the product into the tegument. Then, the seeds received fungal treatment with (3aR,7aS)2-[[(trichloromethyl)sulfanyl]-3a,4,7,7a-tetrahydro-1H-isoinodole-1,3(2H)-dione (Captan 50 P.M.) at 0.5% and were allowed to germinate in germitest paper roll moistened with 2.5-fold more distilled water than the paper weight (Brasil, 1992). Afterwards, they were kept in a BOD chamber at alternate temperature (20°C/16h and 30°C/8h) in the dark (Oliveira, 2004).

The following variables were evaluated: percentage of germination (%G), normal seedlings (%NS), abnormal seedlings (%AS), dead seeds (%DeS), and dormant seeds (%DoS), besides germination speed index (GSI) for atemoya cv. Gefner

RESULTS AND DISCUSSION

As regards germination percentage (%G) and germination speed index (GSI), there were significant effects according to the analysis of variance for the concentrations of GA\(_3\) and GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine applied on atemoya seeds, which was not observed for the mixture CK+GA+AX (Table 1).

The quadratic regression model was significant for germination percentage and GSI (Figure 1). The models were fit from 0 to 1000 mg L\(^{-1}\) GA\(_3\) and from 0 to 500 mg L\(^{-1}\) GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine. Higher concentrations could not be fit, since the curves stabilized. According to the regression analysis, 520 mg L\(^{-1}\) GA\(_3\) led to the highest germination (89.44%), whereas the control resulted in 52% germination (Figure 1A). From the control to the maximum concentration (520 mg L\(^{-1}\) GA\(_3\)), the curve had a crescent tendency, followed by a deep reduction up to 1000 mg L\(^{-1}\), consequently, germination was around that observed for the control (52%). When GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine (Figure 1B) was used, the curve also had a crescent tendency, and germination peaked (95.45%) under the estimated concentration of 329.14 mg L\(^{-1}\), followed by a decrease. The values obtained with CK+GA+AX were lower than those observed with the previously mentioned plant growth regulators, demonstrating less efficiency in inducing germination. The maximum point was obtained with 2.77 mL Kg\(^{-1}\) seeds, which resulted in 50.78% germination (Figure 1C).

As regards GSI, the highest values were detected under the estimated concentrations of 548.80 mg L\(^{-1}\) GA\(_3\) (Figure 1D), 332.99 mg L\(^{-1}\) GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine (Figure 1E) and 2.97 mL CK+GA+AX Kg\(^{-1}\) seeds (Figure 1F), which resulted in 5.21, 3.97 and 2.88 GSI, respectively. The estimated concentrations of GA\(_3\), GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine and CK+GA+AX increased the germination percentage by 41.9%, 43.4% and 1.5%, respectively, relative to control. Considering GSI, GA\(_3\) led to a 42.5% increase, and GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine to a 1.5% increase, however, CK+GA+AX reduced GSI by 5.6%, relative to control.

Table 1: Analysis of variance regarding percentage of germination (%G), normal seedlings (%NS), abnormal seedlings (%AS), dead seeds (%DeS), and dormant seeds (%DoS), besides germination speed index (GSI) for atemoya cv. Gefner.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>%G</th>
<th>%NS</th>
<th>%AS</th>
<th>%DeS</th>
<th>%DoS</th>
<th>GSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA(_3) 500 mg L(^{-1})</td>
<td>89.44</td>
<td>52%</td>
<td>43%</td>
<td>5%</td>
<td>0%</td>
<td>4.00</td>
</tr>
<tr>
<td>GA(_{4+7}) + N-(phenylmethyl)-1H-purine-6-amine 500 mg L(^{-1})</td>
<td>89.44</td>
<td>52%</td>
<td>43%</td>
<td>5%</td>
<td>0%</td>
<td>4.00</td>
</tr>
<tr>
<td>CK+GA+AX 2.77 mL Kg(^{-1})</td>
<td>50.78</td>
<td>50%</td>
<td>50%</td>
<td>0%</td>
<td>50%</td>
<td>0.78</td>
</tr>
</tbody>
</table>

121
seeds subjected to treatments with concentrations of GA$_3$, GA$_{4+7}$ + N-(phenylmethyl)-1H-purine-6-amine and CK + GA + AX.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% G</th>
<th>GSI</th>
<th>% NS</th>
<th>% AS</th>
<th>% DeS</th>
<th>% DoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA$_3$ (mg L$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>4.03 **</td>
<td>4.00 **</td>
<td>1.62 NS</td>
<td>0.80 NS</td>
<td>2.70 **</td>
<td>8.36 **</td>
</tr>
<tr>
<td>CV</td>
<td>14.34</td>
<td>15.72</td>
<td>19.60</td>
<td>26.19</td>
<td>43.02</td>
<td>18.58</td>
</tr>
<tr>
<td>MSD</td>
<td>25.71</td>
<td>1.59</td>
<td>19.12</td>
<td>22.37</td>
<td>20.55</td>
<td>10.68</td>
</tr>
<tr>
<td>GA$_{4+7}$ + N-(phenylmethyl)-1H-purine-6-amine (mg L$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>6.12 **</td>
<td>3.53 **</td>
<td>2.93 **</td>
<td>0.78 NS</td>
<td>1.53 NS</td>
<td>3.52 **</td>
</tr>
<tr>
<td>CV</td>
<td>13.39</td>
<td>14.25</td>
<td>25.75</td>
<td>23.94</td>
<td>60.55</td>
<td>26.67</td>
</tr>
<tr>
<td>MSD</td>
<td>24.18</td>
<td>3.32</td>
<td>25.60</td>
<td>20.49</td>
<td>24.44</td>
<td>16.61</td>
</tr>
<tr>
<td>C K+GA+AX (ml kg$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1.23 NS</td>
<td>1.22 NS</td>
<td>2.83 *</td>
<td>0.16 NS</td>
<td>2.18 *</td>
<td>0.70 NS</td>
</tr>
<tr>
<td>CV</td>
<td>13.97</td>
<td>13.50</td>
<td>22.18</td>
<td>21.60</td>
<td>22.81</td>
<td>51.05</td>
</tr>
<tr>
<td>MSD</td>
<td>14.91</td>
<td>3.11</td>
<td>12.57</td>
<td>17.87</td>
<td>24.61</td>
<td>18.71</td>
</tr>
</tbody>
</table>

Figure 1. Quadratic regression models regarding germination percentage (%G) (A, B, C) and germination speed index (GSI) (D, E, F) for atemoya (Annona cherimola Mill. x A. squamosa L.) cv. Gefner seeds treated with plant growth regulators.

GA$_3$ action on atemoya seed germination was also observed by Stenzel et al. (2003), who obtained 67.5%, 36.25% and 61.25% germination for the cultivars Gefner, PR-1 and PR-3, respectively, by using 50 mg L$^{-1}$ GA$_3$. However, those authors observed lower germination percentage under 100 mg L$^{-1}$, which was detected in the present study only from 520 mg L$^{-1}$ GA$_3$. Similarly, Oliveira (2004) observed higher germination percentage for atemoya cv. Gefner seeds by using 500 mg L$^{-1}$ GA$_3$, which resulted in 80% germination. Gibberellin stimulation is in agreement with Hopkins (1999) and Taiz and Zeiger (2006), since it may have interfered with the
synthesis of enzymes such as α and β-amylase and with the mobilization of reserves stored in the endosperm to the growth regions, which led to cell elongation of embryonic tissues and resulted in higher germination percentage and speed. Also, Silva et al. (2007) suggested increased germination due to the effect of GA\textsubscript{4+7} on the induction of endo-β-mannanase in Annona crassiflora Mart. In the present study, increased germination (Figure 1B, E) was also detected when plant growth regulators from two hormonal groups were combined, gibberellins (GA\textsubscript{4+7}) and cytokinins [N-(phenylmethyl)-1H-purine-6-amine], which agrees with Fraga (1982), who stated that cytokinins are complementary to gibberellins in the induction of enzymatic processes when they are blocked by inhibitors such as abscisic acid and coumarin. Thus, lower concentrations can be used, since similar germination percentages (95.45% and 89.44%) were obtained under lower concentrations of GA\textsubscript{4+7} + N-(phenylmethyl)-1H-purine-6-amine (329.14 mg L-1), compared to those of GA\textsubscript{3} (520 mg L-1). The synergistic effect between cytokinin and gibberellin was also reported by Leonel and Rodrigues (1995) for ‘Cravo’ lemon seed germination (92.12%) and by Ono et al. (1993) for ‘Volkameriano’ lemon (Citrus volkameriana) (89%), both with GA\textsubscript{4+7} + N-(phenylmethyl)-1H-purine-6-amine.

As regards CK+GA+AX (Figure 1C, F), there was an increase in germination percentage and speed, relative to control. However, such results were lower than those obtained when GA\textsubscript{3} and GA\textsubscript{4+7} + N-(phenylmethyl)-1H-purine-6-amine were used. When compared to the control, these results agree with those of Neto et al. (2007), who observed a significant increase in the germination of genipap (Genipa americana L.) seeds treated with Stimulate® and those of Castro and Vieira (2001) for soybean (Glycine max (L.) Merrill), bean (Phaseolus vulgaris L.) and rice (Oryza sativa L.) seeds. The analysis of variance indicated a significant effect on normal seedling percentage under application of GA\textsubscript{4+7} + N-(phenylmethyl)-1H-purine-6-amine and CK+GA+AX (Table 1). The quadratic regression model was significant for normal seedlings treated with biostimulants and cubic for those subjected to GA\textsubscript{3} (Figure 2).
The concentrations of 495.80 mg L\(^{-1}\) GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine (Figure 2B) and 4.07 ml Kg\(^{-1}\) CK+GA+AX (Figure 2C) led to the highest quantity of normal seedlings, equal to 52.8% and 31.2%, respectively, based on the regression analysis. These concentrations increased normal seedling percentage by 20% and 14.2%, relative to control, the values of which were 32% and 13%. Under GA\(_3\) application, the cubic regression model presented a coefficient of determination of 92%, with two critical points, a maximum (391.19 mg L\(^{-1}\)) and a minimum point (866.17 mg L\(^{-1}\)). The former led to 73.7% normal seedlings, which represented a 44.7% increase, relative to control (29%). A much lower increase (10%, 39% normal seedlings) was detected for the minimum point. It must be emphasized that there was an increase in this variable, relative to control, even for this minimum point (Figure 2A). This statement disagrees with that of Ferreira et al. (2002), who did not detect differences in the percentage of Annona squamosa L. normal seedlings from seeds subjected to the application of 250 mg L\(^{-1}\) GA\(_3\) on seeds. Conversely, Oliveira (2004) observed a linear increase in the percentage of normal atemoya seedlings from 0 to 1000 mg L\(^{-1}\) GA\(_3\).

As regards abnormal seedlings, the quadratic regression model presented coefficient of determinations equal to 0.93 for GA\(_3\), 0.94 for GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine, and 0.97 for CK+GA+AX (Figure 2 D,E,F). The estimated concentrations of 517.76 mg L\(^{-1}\) GA\(_3\), 495.80 mg L\(^{-1}\) GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine, and 7.48 mL Kg\(^{-1}\) CK+GA+AX led to the highest quantity of abnormal seedlings, equal to 39.0%, 32.0% and 30.0%, respectively, based on the regression analysis. Under application of GA\(_3\) and GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine, the effect of these concentrations increased by 16% and 10% the abnormal seedling percentage, relative to control, the values of which were 23% and 22%, respectively, whereas CK+GA+AX decreased it by 0.7%, relative to control (37%). These results disagreed with those obtained by Ferreira et al. (2002), who did not detect significant effects on abnormal seedling percentage for sweetsop (Annona squamosa L.) subjected to 250 mg L\(^{-1}\) GA\(_3\), and Oliveira (2004), who did not observe an increase in the percentage of atemoya cv.

CONCLUSION

GA\(_3\) and GA\(_{4+7}\) + N-(phenylmethyl)-1H-purine-6-amine were more effective than CK+GA+AX on the germinative process of atemoya (Annona cherimola Mill. x A. squamosa L.) cv. Gefner seeds.

REFERENCES

Germination of (Annona cherimola Mill. x A. squamosa L.) seeds treatments with plant growth regulators

