FORTIFIED COMPOST MANURE IMPROVES YIELD AND GROWTH OF AFRICAN NIGHTSHADES

Ondieki, M.J., Aguyoh, J.N. and Opiyo, A.M.
Egerton University, Department of Crops, Horticulture and Soil. P.O. BOX 536 Egerton. Kenya

ABSTRACT
Response of three African nightshade species subjected to different levels of fortified compost manure was evaluated in a field experiment conducted for two seasons in 2006/2007. The three African nightshade species were: *Solanum villosum* Miller, *Solanum americanum* Miller and *Solanum scabrum* Miller. The species were subjected to four levels of fortified compost manure applications (2t/ha, 4t/ha, 6t/ha, 8t/ha) and no manure application as the control. The experimental design was a Randomized Complete Block Design with 15 treatment combinations. Data collection started three weeks after transplanting and continued for nine weeks. The collected data were subjected to analysis of variance (ANOVA) using a Mixed Models procedure of SAS. Biomass accumulation and average edible yield were affected by compost manure application. Of the three species, *S. americanum* subjected to 8 t/ha compost manure level gave the highest yield of 5.2 t/ha. The height and internode lengths of the same species were increased by an average of 34% and the stem thickness by 30% compared to the control over the two seasons. Longer internodes, thicker stems and higher number of branches as exhibited by *S. americanum* are good characteristics as these parameters improve on the amount of harvestable biomass that often include tender stems.

KEYWORDS: African nightshade, fortified compost manure, *Solanum villosum*, *Solanum americanum* and *Solanum scabrum*.

INTRODUCTION
African nightshades are among the many traditional leafy vegetables that continue to be cultivated by Kenyan communities. Like many traditional vegetables, African nightshades act as food security and are source of better nutrition as they are rich in, calcium, iron, and vitamins A and C (Schippers et al., 2001). Nightshades are also a source of income for the rural poor. There exist market opportunities for these traditional vegetables especially in less favorable environments where they have a comparative advantage over major staples or commercial crops. Not withstanding all its cultural and socio economic importance, African nightshades are still underutilized by the contemporary community. The vegetable is mainly grown by traditional farmers for subsistence. One way of improving its utilization is by promoting its production by use of compost manures.

According to Peter et al., (1997), compost manure has multiple benefits on both the improvement of the soil and vegetable performance. As a soil fertility amendment, it can be used as a source of soil nutrients as well as a mulch to raise soil temperatures. Compost manure provides alternative weed control and/or can be used in an integrated weed management program. Compost manures are generally environment friendly. In cases where compost manures could be nutrient deficient due to the type of raw materials used, artificial fortification can be done by adding the deficient nutrient hence ensuring its appropriateness. Although few farmers have tried to produce African nightshades using compost manure, no detailed study has been done and documented for use by the wider farming community in Kenya. Moreover, the type of compost these farmers have used is either from within domestic premises which could be nutrient variable or deficient depending on the raw materials and methods used during composting; hence the need for fortification to make them more appropriate. In a study to determine the effect of nitrogen application on leaf yield and nutritive quality of African nightshade *Solanum nigrum* L., (Opiyo, 2004) reported that nitrogen application increased leaf yield. The study also reports no interaction between nitrogen level and application method on the performance of *S. nigrum*.

Production of African nightshade using compost manures is limited. According to Chweya (1985), and Chweya and Eyzaguirre (1999). Rates of 2-3 kg/m² of well decomposed cattle manure is recommended; but can vary up to 6 kg/m² depending on soil type and manure quality. For chicken manures, half to a quarter the rate of cattle manure can be used. Murage (1990) reported that out of the 0, 5, 10, and 15 gN/plant rates used in a study to determine the effect of nitrogen fertilizer application on plant growth, leaf yield and nutritive quality of *Solanum nigrum*, 5 gN/plant was optimal. Opiyo (2004) on the other hand reported that yields were significantly higher at rates of 52, 78, and 104 kgN/ha than at 26 kgN/ha and the control in an experiment designed to study the effects of nitrogen application on leaf yield and nutritive quality of black nightshade. Since there were no significant difference between 52, 78 and 104 kgN/ha, it seems the optimum rate for this study was anywhere between 26-52 kgN/ha. This is in the range of 2-4 50 kg CAN bags of 26%N per hectare.

MATERIALS AND METHODS
The research was carried out at Kisii Agricultural Training Center (ATC-Kisii) in the years 2006/2007 and was repeated once. The research site falls under upper midland agro-ecological zone with an altitude of between 1570 and
Fortified manure improves yield and growth of African nightshades

2015 m a.s.l. The soils are mainly loam soils classified as phaeozems (FAO/UNESCO, 1974). The average annual rainfall ranges between 1200 – 2000 mm. The average daily temperature range is 18-22°C.

Seeds of the three species tested were obtained from National Gene Bank Muguga in the year 2006. Seedlings were raised in the nursery and transplanting was done five weeks after sowing when the seedlings had at least 6 true leaves. At this stage, they were about 10 cm – 15 cm tall.

The experiment was a factorial arrangement of treatments in a randomized complete block design (RCBD) in which two factors (African nightshade species and fortified compost manure) were studied. The three African nightshades tested in this study were namely: Solanum scabrum Miller, Solanum villosum Miller and Solanum americanum Miller.

In this study, considering the source of nitrogen which was fortified compost manure (2.13%N) and a soil composition of 0.31% N, a rate of 3kg compost/m² was taken to be the maximum rate (Schipper et al., 2001). This translated to 1.35 gN/plant given a compost composition of 0.5% N (Robinson and Neil, 1977). On that basis, the following rates were adopted: C₉ = 0 t/ha, C₁₀ = 2 t/ha, C₁₁ = 4 t/ha, C₁₂ = 6 t/ha and C₁₃ = 8 t/ha. These rates translated into 0 kgN/ha, 42.6 kgN/ha, 85.2 kgN/ha, 127.8 kgN/ha and 170.4 kgN/ha respectively. Fortified compost manure from James Finlay Company, Kericho was used.

This manure is made from tea by-product. At the start, the by-product has a moisture content of about 70% and is brown in color. The product is dried by covering it with black polythene in the open and turned at least twice a week. Temperatures at the start of composting is 48 °C, and rises to 70 °C in the 5th–6th week before coming down to less than 48 °C at the 8th week when the compost is ready. At this time, the moisture content is approximately 40% (although it can vary depending on weather); and the color would have also changed to black. The compost is then fortified by adding rock phosphate at a rate of 100 kg ton⁻¹, muriate of potash at a rate of 10kg ton⁻¹ and magnesium oxide (MgO) at a rate of 1 kg ton⁻¹. Nutrient content of the final product was determined according to Hinga et al., (1980) and was found to be N=2.13%, K=5%, P=3.38% and Mg=0.57%.

Experiment layout was done and compost manure applied one week to transplanting. An experimental unit measured 2 m by 2 m with a footpath of 0.5 m all round. The spacing of African nightshade plants was 30 cm by 30 cm giving a total of 36 plants per m².

Because there were no significant differences in the two seasons, each set of data of a measured parameter were pooled together and then subjected to analysis of variance (ANOVA) using a Mixed Models procedure of SAS V8 statistical package [SAS Institute 1999]. The UNIVARIATE procedure of SAS was used to check that the data were normally distributed before analysis. Cultivation was done to attain a favorable tilth before transplanting. Soil and fortified manure analysis was done before planting as described by Hinga, et al., (1980). To measure the growth and yield parameters, nine plants per experimental unit were randomly selected and tagged for data collection and the following parameters were measured:

Plant height: The height of each of the tagged plants was determined by measuring from ground level to tip of the longest stem of the plant on a weekly interval for four weeks.

Fresh weight: Each of the nine sample plants was harvested on continuous basis for four weeks after transplanting, and the mean used to compute fresh weight.

Dry weight: The nine sample plants that were harvested for fresh weight determination were placed under shade for 6 hrs to remove excess moisture. The plants were then dried at 70 °C to constant weight. The weight of each plant was recorded and average for each treatment taken as dry weight per plant for that treatment.

Internodes length: The fourth internodes of tagged plants in an experimental unit were marked and their lengths determined between the adjacent nodes. The measurements continued at weekly interval starting from 6th week after transplanting to the termination of the experiment.

Stem diameter: Fourth internodes of each of the nine sample plants were marked and their diameters determined using micrometer screw gauge. The measurement continued to be taken at weekly intervals starting from 6th week after transplanting to the termination of the experiment.

Edible yield: The term yield in this research was used to include all parts of the plant that is usually harvested and used as vegetable. It included two leaves and a bud. Harvesting was done from a set of nine plants per treatment on a weekly interval starting from six weeks after transplanting. Total weight of the harvested plants was determined using Salter Elite Electronic scale model 3001 with an accuracy of ±1g.

Light interception: Light interception was determined using Sunfleck PAR Ceptometers Model SF – 80 with which measurements were taken within the photosynthetically active radiation (PAR) waveband. This was done at the 4th week after transplanting. The formula F = 1 - t (Sunfleck PAR Ceptometers; operators manual) was used to get light interception where: F - Fractional PAR canopy absorption t – Fraction of incident PAR radiation transmitted by canopy.

Chlorophyll concentration: Fresh tissue (1 g) was sampled from the youngest fully expanded leaf, extracted with 90% acetone and read using a UV/Visible Spectrophotometer (Bausch & Lomb, Belgium) at 663, 645 and 750 nm wavelengths. Absorbance at 750 nm was subtracted from absorbance at the other two wavelengths to correct for any turbidity in solution before chlorophyll concentrations were calculated using the formulae given by Strain and Svec (1966) ChLₐ (mg.ml⁻1) = 11.64X(A663) – 2.16X(A645) and ChLₜ (mg.ml⁻1) = 20.97X(A645) – 3.94X(A663), where (A663) and (A645) represents absorbance values read at 663 and 645 nm wavelengths respectively.

RESULTS

Plant height: There was a general increase in plant height with an increase in the compost manure level. However, only S. americanum subjected to 8 t/ha of compost manure had a significant height difference when compared to the control. At 8 t/ha, the height of this species was increased by 48% compared to the control (Table 1). S. scabrum
and *S. villosum* remained consistently shorter and taller respectively under all levels of the compost manure tested (Table 1).

TABLE 1. Effect of compost manure levels on the height of African nightshade species

<table>
<thead>
<tr>
<th>Species</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. scabrum</td>
<td>10.9d*</td>
<td>15.7d</td>
<td>15.9d</td>
<td>15.7d</td>
<td>15.6d</td>
<td>14.4c</td>
</tr>
<tr>
<td>S. villosum</td>
<td>30.1ab</td>
<td>35.4a</td>
<td>37.5a</td>
<td>35.6a</td>
<td>37.9a</td>
<td>34.9a</td>
</tr>
<tr>
<td>S. americanum</td>
<td>16.2d</td>
<td>18.3bcd</td>
<td>27.7abc</td>
<td>24.7abc</td>
<td>31.3ab</td>
<td>22.9b</td>
</tr>
<tr>
<td>Mean</td>
<td>20.6</td>
<td>23.1</td>
<td>27.0</td>
<td>22.5</td>
<td>26.9</td>
<td></td>
</tr>
</tbody>
</table>

Means with the same letter(s) within a column or row are not significantly different at P≤0.05 by DMRT.

Internode length: The average internode length of African nightshade species tested increased with increase in compost manure levels by an average of 13% over the control (Table 2). At the highest compost manure level of 8 t/ha, the internode length of *S. villosum* and *S. americanum* species were longer (14% and 35% respectively) compared to those produced with no compost manure (Table 2).

Stem diameter: Average stem thickness of African nightshades increased with an increase in the amount of compost manure applied. An increase in stem diameter of 17% was observed in the African nightshades subjected to compost manure application. However, the height of the African nightshades was the same when averaged across the compost manure levels (Table 2).

TABLE 2. Internode length of African nightshade species as affected by compost manure levels

<table>
<thead>
<tr>
<th>Species</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internode length (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. scabrum</td>
<td>1.48cd*</td>
<td>1.61cd</td>
<td>1.46cd</td>
<td>1.55cd</td>
<td>1.33cd</td>
<td>1.48b</td>
</tr>
<tr>
<td>S. villosum</td>
<td>2.08abc</td>
<td>1.78bcd</td>
<td>2.07abc</td>
<td>2.41ab</td>
<td>2.43ab</td>
<td>2.17a</td>
</tr>
<tr>
<td>S. americanum</td>
<td>1.75bcd</td>
<td>2.01abcd</td>
<td>1.47cd</td>
<td>2.12abc</td>
<td>2.68a</td>
<td>2.01a</td>
</tr>
<tr>
<td>Mean</td>
<td>1.77ba</td>
<td>1.83ba</td>
<td>1.67b</td>
<td>2.03ab</td>
<td>2.15a</td>
<td></td>
</tr>
</tbody>
</table>

Means with the same letter(s) within a column or row are not significantly different at P≤0.05 by DMRT.

Fresh weight: The average fresh weight of the species was highest at the maximum manure application of 8 ton/ha compared to the control (Table 5). When the response of the three species was checked against individual compost manure levels, fresh weight of *S. americanum* species subjected to the highest application rate of 8 ton/ha was increased by 50% compared to those with no compost manure application (Table 5).

Dry weight: The average dry weight of African nightshade increased with increase in the organic manure.
Fortified manure improves yield and growth of African nightshades

The dry weight of *S. scabrum* was increased by between 21% and 45% under 8 t/ha of compost manure while the dry weights of other species was not affected by the different levels of compost manure (Tables 6).

TABLE 5. Fresh weight of African nightshade species as affected by compost manure levels

<table>
<thead>
<tr>
<th>Species</th>
<th>Compost manure levels (ton ha⁻¹)</th>
<th>Fresh weight (g/plant)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>S. scabrum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>292.0c*</td>
<td>556.3bc</td>
<td>724.7abc</td>
</tr>
<tr>
<td>S. villosum</td>
<td></td>
<td>487.3bc</td>
<td>649.3bc</td>
</tr>
<tr>
<td>S. americanum</td>
<td></td>
<td>567.0bc</td>
<td>604.7bc</td>
</tr>
<tr>
<td>Mean</td>
<td>448.8b</td>
<td>603.4ab</td>
<td>728.7a</td>
</tr>
</tbody>
</table>

Means with the same letter(s) within a column or row are not significantly different at P≤0.05 by DMRT.

TABLE 6. Dry weight of African nightshade species as affected by compost manure levels

<table>
<thead>
<tr>
<th>Species</th>
<th>Compost manure levels (ton ha⁻¹)</th>
<th>Dry weight (g/plant)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>S. scabrum</td>
<td></td>
<td>44.0b*</td>
</tr>
<tr>
<td>S. villosum</td>
<td></td>
<td>50.7b</td>
</tr>
<tr>
<td>S. americanum</td>
<td></td>
<td>42.3b</td>
</tr>
</tbody>
</table>

Means with the same letter(s) within a column or row are not significantly different at P≤0.05 by DMRT.

FIGURE 1. Effects of compost levels on percentage light interception across African nightshades.

TABLE 7. Variations in the chlorophyll (mg/kg fresh weight) content of three selected black nightshade species as affected by fortified manure application
Edible Yield (ton/ha) reception when averaged across the three ions compost manure compared ency. Plants suffering from one, but not for a longer (2004). where this stage of growth was reached in four to Chweya, 1997, Schippers, 2000; and Mwai and Schippers, support those reported by Edmonds and Chweya, (1997), resulting in large stems and leaves. Our observat than any other element. It stimulates vegetative growth Nitrogen is reportedly more responsible for plant growth the tested crops. The organic sources retained the soil moistu organic and inorganic sources of nitrogen into the soil. replenishment of the used up nitrogen by addition of nitrogen application (Gungula et al., 2005). Our results are similar to those reported in other studies that involved the use of both organic and inorganic sources of nitrogen nutrients. For example, Overcash et al., (2005), reported an enhanced growth of many crops through replenishment of the used up nitrogen by addition of organic and inorganic sources of nitrogen into the soil. The organic sources retained the soil moisture for a longer period of time resulting into improved growth and yield of the tested crops. Nitrogen is reportedly more responsible for plant growth than any other element. It stimulates vegetative growth resulting in large stems and leaves. Our observations support those reported by Edmonds and Chweya, (1997), Chweya, 1997, Schippers, 2000; and Mwai and Schippers, (2004), where this stage of growth was reached in four to five weeks after transplanting. The results also support the findings of Onyango et al., (1999) who reported enhanced growth of plants grown under different organic and inorganic nitrogen sources. African nightshade plants subjected to low levels or no fortified manure application exhibited poor growth rate associated with nitrogen deficiency. Plants suffering from nitrogen deficiency mature earlier and their vegetative growth stage is shortened (Wolf, 1999). On the other hand excess nitrogen results in lush plants with soft tissue and subsequent lateness in maturity (Wolf, 1999). These reports confirm the observation in this research where the internode diameter and internode length increased with increase in fortified compost manure levels. The results also confirm those reported by Indira (2005) who attributed the response of plants to nitrogen application to enhanced nitrogen mining capacity of plants due to increased translocation of photoassimilates brought about by faster root growth. In this research, the highest yield of 5.19 ton/ha was obtained from S. americanum species under sequential harvesting in season two. Cumulative leaf yields of up to 12-20 t/ha\(^ {1}\) is per growing season was reported by Edmonds

DISCUSSIONS

Response of the various growth parameters measured depended on the variety of the African nightshade and the level of compost manure applied. Plant growth parameters such as plant height, number of leaves and leaf area easily respond to nitrogen application (Gungula et al., 2005). Our results are similar to those reported in other studies that involved the use of both organic and inorganic sources of nitrogen nutrients. For example, Overcash et al., (2005), reported an enhanced growth of many crops through replenishment of the used up nitrogen by addition of organic and inorganic sources of nitrogen into the soil. The organic sources retained the soil moisture for a longer period of time resulting into improved growth and yield of the tested crops. Nitrogen is reportedly more responsible for plant growth than any other element. It stimulates vegetative growth resulting in large stems and leaves. Our observations support those reported by Edmonds and Chweya, (1997), Chweya, 1997, Schippers, 2000; and Mwai and Schippers, (2004), where this stage of growth was reached in four to five weeks after transplanting. The results also support the findings of Onyango et al., (1999) who reported enhanced growth of plants grown under different organic and inorganic nitrogen sources. African nightshade plants subjected to low levels or no fortified manure application exhibited poor growth rate associated with nitrogen deficiency. Plants suffering from nitrogen deficiency mature earlier and their vegetative growth stage is shortened (Wolf, 1999). On the other hand excess nitrogen results in lush plants with soft tissue and subsequent lateness in maturity (Wolf, 1999). These reports confirm the observation in this research where the internode diameter and internode length increased with increase in fortified compost manure levels. The results also confirm those reported by Indira (2005) who attributed the response of plants to nitrogen application to enhanced nitrogen mining capacity of plants due to increased translocation of photoassimilates brought about by faster root growth. In this research, the highest yield of 5.19 ton/ha was obtained from S. americanum species under sequential harvesting in season two. Cumulative leaf yields of up to 12-20 t/ha\(^ {1}\) is per growing season was reported by Edmonds

TABLE 8. Yield of African nightshade species as affected by compost manure levels

<table>
<thead>
<tr>
<th>Species</th>
<th>Edible component yield (ton/ha)</th>
<th>Manure Level</th>
<th>Season One</th>
<th>Season Two</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>S. scabrum</td>
<td>1.92d*</td>
<td>2.47cd</td>
<td>2.80cd</td>
<td>3.24bcd</td>
</tr>
<tr>
<td>S. villosum</td>
<td>2.81cd</td>
<td>3.11de</td>
<td>3.39bcd</td>
<td>3.32bcd</td>
</tr>
<tr>
<td>S. americanum</td>
<td>2.78cd</td>
<td>3.65abcd</td>
<td>4.05abc</td>
<td>4.92ab</td>
</tr>
</tbody>
</table>

*Means with the same letter(s) within a column or row are not significantly different at P≤0.05 by DMRT.

Light interception

There was a general but insignificant increase on the percent light interception when averaged across the three African nightshades tested. The highest interception of 70% was at the highest manure application (8 tons/ha), this was 53% more than percent light interception by the plants grown with no compost manure (Fig. 1).

Chlorophyll content of African nightshade leaves

When the effects of compost manure levels were checked against the individual African nightshade species, significant but inconsistent differences were observed in the amount of chlo a in the tissues in season one, but not in season two. The lowest amount of chlo b was observed in the tissues of S. americanum. However, the results could not be tied to a specific level of compost manure applied (Table7). There was a general increase (Yield = 1.9624 + 0.5016x, R\(^2\) = 0.9663) of the average edible yield of African nightshade species with increase in the compost manure levels. There highest increase of was 45% in the edible yield of all the three species was observed at the highest application rate (8 ton/ha) of compost manure compared to the control (Table 8).
and Chweya, (1997), with a total leaf yield of 5 t/ha\(^{-1}\) obtained from six sequential harvests of *S. americum* species. The improved yield of the African nightshades subjected to compost manure might be explained by the fact that weekly cumulative harvests allows for the regeneration of edible vegetative growth. It is possible that the spacing of 30 x 30 cm allowed for the formation of more branches at compost manure levels of above 6ton/ha leading to higher yields of edible parts. On the hand, the yield increases observed in the *S. americanum* species could be due to enhanced growth characteristics such as the stem diameter which was 7.9 mm at the highest compost manure level of 8 t/ha, this was 30% over those plant without compost manure. This increase in stem thickness together with the increase in the number of branches might have contributed to this species giving the best yield of 5.19 t/ha at the highest manure level of 8tons/ha, which was 55% more than those recorded from the same species grown without any external source of nutrients. Organic materials are reported to increase soil fertility and leaf yield of traditional vegetables. For example, Merinyo (1996) in his study, reported that the application of nitrogen (150 kg N/ha) in combination with FYM at the rate of 10 t/ha greatly influenced yield of *S. nigrum*.

This study provides useful information on the production of three different African nightshade species using fortified compost manure. It documents the variations in growth and yield components of the three species subjected to different levels of fortified compost manure. Among the important information that can be gathered from this research is that fortified compost manure is useful in the production of African nightshades. The growth and edible yield of all the three species were influenced by the compost manure levels. Although the degree of response varied, the best compost manure level was 8t/ha when used in the production of *S. americanum*. Produced under similar conditions, this species will give the highest edible yield parts. It also exhibited the best growth characteristics such as high number of branches and larger stems.

REFERENCES

