THE BIFURCATION OF A FOOD CHAIN ACROSS A REFUGE STAGE-STRUCTURE PREY-PREDATOR MODEL

Azhar Abbas Majeed & Sabah Ali Rahi
Department Of Mathematics, College Of Science, University of Baghdad, Baghdad, Iraq.

ABSTRACT
In the present paper, the conditions which guarantee the occurrence of local bifurcation (such as saddle-node, transcritical and pitchfork) of all equilibrium points of ecological mathematical model consisting of prey-predator model with two different functional responses incorporating a prey refuge are confirmed, it is observed that there is a transcritical bifurcation near the vanishing equilibrium point \(E_0 \), while there is either a transcritical or a pitchfork bifurcation near the free top-predator's and free predators' equilibrium points \(E_1 \) and \(E_2 \) respectively, on the other hand there is a saddle-node bifurcation at the coexistence equilibrium point \(E_3 \). Further investigation with special emphasis on the Hopf bifurcation near the coexistence equilibrium point is established and carried out. Finally, some numerical simulations are used to illustrate the occurrence of local bifurcation of this model.

KEYWORDS: Ecological model, Sotomayor's theorem, Equilibrium point, Local bifurcation, Hopf bifurcation.

INTRODUCTION
The word bifurcation linguistically, means a kind of branching process in which the point or area forked and divided into several parts or branches, is extensively used to describe any situation or phenomena that is the qualitative, topological portrait of the topic we are discussing alters with a small change of the parameters on which the topic depends. The topics in question can be extremely various: for example, curves or surfaces, real or complex, functions or maps, vector fields, differential or integral equations. In this presentation the topic in question will be dynamic system with a formula of differential equations. Such dynamical systems widely arise in the sciences when one formulates system including equations of motion to a physical or a mathematical model. The setting of these equations is the portion or phase space of the system. In the phase space a point \(x \) corresponds to all possible states for the system, and the solution with initial condition \(x_0 \) specifies a curve in the phase space passing through \(x \) in the case of a differential equation. The universal representation of these curves which is corresponding to all points in phase space constitutes the phase portrait. This portrait gives a global qualitative image of the dynamics, and this image depends on any parameters in the equations of motion or boundary conditions. When one varies any of these parameters may result a slight deformation in the phase portrait without changing its qualitative (i.e., topological) features, or the dynamics may be altered significantly, producing a qualitative deform in the phase portrait. Bifurcation theory studies these changes of the qualitative in the phase portrait, such as the appearance or disappearance of equilibriums, periodic orbits, or more complex features e.g., strange attractors. Actually, the fundamentals to an understanding of nonlinear dynamical systems depend on the methods and results of bifurcation theory and this theory can likely be applied in any field of nonlinear system in nature. Moreover, the bifurcations are divided into classes' parts: local and global bifurcation; A local bifurcation (such as saddle node, transcritical, and pitchfork) theory indicates to the bifurcations from the equilibrium points which occur in the neighborhood of a single point. This constraint overlooks a large area on global bifurcations where some qualitative changes occur in the phase portrait that are not noticed or picked up by looking near a single point. Wiggins (1988) provides an introduction to this portion of the subject. In addition, a Hopf bifurcation means the appearance or the disappearance of a periodic orbit across a local change in the properties of the stability around a fixed point. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues (of the linearization around the fixed point) cross the complex plane imaginary axis \[1\]. Under logical general propositions about the dynamical system, a small- range limits cycle branches from the fixed point. A Hopf bifurcation is also known as a Poincaré–Andronov–Hopf bifurcation, named after Henri Poincaré, Eberhard Hopf, and Aleksandr Andronov.

On the other hand, the bifurcation theory is a topic with classical mathematical roots, such as in the work of Euler (1744), the characterization was presented twenty years ago by Arnold (1972), but the modern progressing of the topic introduced by Poincare with the qualitative theory of differential equations \[2\]. Lately, this theory has undergone a huge development by using and infusing new ideas and methods into dynamical
A food chain across a refuge stage-structure prey-predator model

systems theory. Naji and Majeed[3] studied the occurrence of local bifurcation near each of the equilibrium points of a prey-predator model with a refuge-stage structure in prey population. The local and Hopf bifurcation near each of the equilibrium points of a stage structured prey food web model with refuge is discussed by Kadhim, Majeed and Naji[4]. Majeed and Ali[5] discussed the local bifurcation near each of the equilibrium points and the Hopf bifurcation near the positive point of a stage structured prey food chain model with refuge and two functional responses which represent the relationship between the two predators with the non-refugees prey.

Finally, in this paper, a set of basic results and methods in local bifurcation theory around all equilibrium points and a Hopf bifurcation theory around the positive equilibrium point for system which depends on a single parameter μ is presented and discussed of a mathematical model proposed by Majeed and Rahi[6].

Mathematical Model[6]

An ecological mathematical model consisting of prey-predator model with two different functional responses incorporating a prey refuge is proposed and analyzed in[6].

$$\begin{align*}
\frac{dx}{dt} &= r X_2 \left(1 - \frac{x}{k}\right) - \frac{a_1(1-m)Y_1}{bX_1} Y_1 - s X_1 - d_1 X_1 \\
\frac{dy}{dt} &= s X_1 - a_2 (1-m) Y_2 Y_1 - d_2 Y_2 \\
\frac{dz}{dt} &= e_1a_2 (1-m) X_2 Y_2 - a_2 Y_2 Y_2 - d_3 Y_2 \\
\frac{dw}{dt} &= e_2a_2 Y_1 Y_2 - d_4 Y_2.
\end{align*} \quad (1)$$

With initial conditions $X_1(0) \geq 0$ and $Y_i(0) \geq 0$, $i = 1, 2$.

Note that the above proposed model has fourteen parameters in all which make the analysis difficult. So in order to simplify the system, the number of parameters is reduced by using the following dimensionless variables and parameters:

$$
t = r T, \quad u_1 = \frac{b}{k}, \quad u_2 = \frac{s}{r}, \quad u_3 = \frac{d_1}{r}, \quad u_4 = \frac{a_2}{a_1}, \quad u_5 = \frac{d_2}{r}, \quad u_6 = \frac{e_1}{r}, \quad u_7 = \frac{e_2a_2k}{r}, \quad u_8 = \frac{d_3}{r}, \quad u_9 = \frac{e_3a_2k}{r}, \quad u_{10} = \frac{d_4}{r}, \quad x = \frac{X_1}{k}, \quad y = \frac{X_2}{k}, \quad z = \frac{Y_1}{r}, \quad w = \frac{Y_2}{r}.
$$

Then the non-dimensional form of system (1) can be written as:

$$\begin{align*}
\frac{dx}{dt} &= x \left[\frac{y (1-y)}{x} - \frac{(1-m)z}{u_1 + x} - (u_2 + u_3)\right] = f_1(x, y, z, w) \\
\frac{dy}{dt} &= y \left[\frac{u_2 x}{y} - u_4 (1-m) z - u_5\right] = f_2(x, y, z, w) \\
\frac{dz}{dt} &= z \left[\frac{u_6 (1-m) x}{u_1 + x} + u_7 (1-m) y - u_8\right] = f_3(x, y, z, w) \\
\frac{dw}{dt} &= w \left[u_9 z - u_{10}\right] = f_4(x, y, z, w).
\end{align*} \quad (2)$$

With $x(0) \geq 0, y(0) \geq 0, z(0) \geq 0$ and $w(0) \geq 0$.

It is observed that the number of parameters has been reduced from fourteen in the system (1) to eleven in the system (2).

Obviously the interaction functions of the system (2) are continuous and have continuous partial derivatives on the following positive four dimensional spaces.

$$\mathbb{R}^4_+ = \{ x, y, z, w \in \mathbb{R}^4 : x(0) \geq 0, y(0) \geq 0, z(0) \geq 0, w(0) \geq 0 \}.$$

Therefore these functions are Lipschitzian on \mathbb{R}^4_+, and hence the solution of the system (2) exists and is unique. Further, all the solutions of system (2) with non-negative initial conditions are uniformly bounded as shown in theorem (1) which is proved in [6].

The local bifurcation analysis of system (2)

In this section, the influence of altering the parameter values on the dynamical behavior of the system (2) around each equilibrium point is discussed. Recall that the existence of non-hyperbolic equilibrium point of system (2) is the necessary but not sufficient condition for bifurcation to occur. Therefore, in the following theorems an application of the Sotomayor’s theorem[7] for local bifurcation is appropriate.
Now, according to Jacobian matrix of system (2) given in eq. (6) (more details see [6]), it is clear to verify that for any nonzero vector $V = (v_1, v_2, v_3, v_4)^T$ we have:

$$D^2 f_\mu(X, \mu) (V, V) = \left[e_{ij} \right]_{i,j=1} \quad (3.1)$$

where:

$$e_{11} = 2 \left[\frac{u_1 (1 - m) v_1}{(u_1 + x)^2} \left(\frac{z v_1}{u_1 + x} - v_3 \right) - v_2^2 \right],$$

$$e_{21} = -2 u_4 (1 - m) v_2 v_3,$$

$$e_{31} = 2 \left[u_1 u_6 (1 - m) v_1 \left(v_3 - \frac{z v_1}{u_1 + x} \right) + v_3 (u_7 (1 - m) v_2 - v_4) \right],$$

$$e_{41} = 2 u_9 v_2 v_4,$$

and

$$D^3 f_\mu(X, \mu)(V, V, V) = \left(\begin{array}{ccc} 6 \frac{u_1 (1 - m) v_1^2}{(u_1 + x)^3} & -v_3 & 0 \\ 0 & 6 \frac{u_1 u_6 (1 - m) v_1^2}{(u_1 + x)^3} & 0 \\ 0 & 0 & 3 \end{array} \right). \quad (3.2)$$

Where $X = (x, y, z, w)^T$ and μ is any bifurcation parameter.

In the following theorems the local bifurcation conditions near the equilibrium points are established.

Theorem (3.1): If the parameter u_5 passes through the value $u_5^0 = \frac{u_2 + u_3}{u_2 + u_3}$ then the vanishing equilibrium point E_0 transforms into non-hyperbolic equilibrium point and system (2) possesses a transcritical bifurcation but neither saddle-node, nor pitchfork bifurcation can occur at E_0.

Proof: According to the Jacobian matrix $J(E_0)$ given by eq. (7) in [6] the system (2) at the equilibrium point E_0 has zero Eigenvalue (say $\lambda_{0y} = 0$) at $u_5 = u_5^0$, and the Jacobian matrix J_0 with $u_5 = u_5^0$ becomes:

$$f_0^* = f(u_5 = u_5^0) = \left(\begin{array}{cccc} - (u_2 + u_3) & 1 & 0 & 0 \\ u_2 & -u_5^0 & 0 & 0 \\ 0 & 0 & -u_8 & 0 \\ 0 & 0 & 0 & -u_{10} \end{array} \right).$$

Now, let $\psi^{[0]} = \left(\psi_1^{[0]}, \psi_2^{[0]}, \psi_3^{[0]}, \psi_4^{[0]} \right)^T$ be the eigenvector corresponding to the eigenvalue $\lambda_{0y} = 0$. Thus $(f_0^* - \lambda_{0y} I) \psi^{[0]} = 0$, which gives:

$v_2^{[0]} = \frac{u_2 + u_3}{u_5}, \; v_3^{[0]} = 0, \; v_4^{[0]} = 0$ and $v_1^{[0]}$ any nonzero real number.

Let $\psi^{[0]} = \left(\psi_1^{[0]}, \psi_2^{[0]}, \psi_3^{[0]}, \psi_4^{[0]} \right)^T$ be the eigenvector associated with the eigenvalue $\lambda_{0y} = 0$ of the matrix f_0^T. Then we have, $(f_0^T - \lambda_{0y} I) \psi^{[0]} = 0$. By solving this equation for $\psi^{[0]}$ we obtain, $\psi^{[0]} = \left(\psi_1^{[0]}, \frac{1}{u_5} \psi_1^{[0]}, 0, 0 \right)^T$, where $\psi_1^{[0]}$ any nonzero real number.

Now, consider:

$$\frac{\partial f}{\partial u_5} = f_{u_5}(X, u_5) = \left(\frac{\partial f_1}{\partial u_5}, \frac{\partial f_2}{\partial u_5}, \frac{\partial f_3}{\partial u_5}, \frac{\partial f_4}{\partial u_5} \right)^T = \left(0, -y, 0, 0 \right)^T.$$

So, $f_{u_5}(E_0, u_5^0) = (0, 0, 0, 0)^T$ and hence $(\psi^{[0]})^T f_{u_5}(E_0, u_5^0) = 0$.

Therefore, according to Sotomayor’s theorem the saddle-node bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied.

Now, since
A food chain across a refuge stage- structure prey-predator model

\[Df_{u_5}(X, u_5) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \]

where \(Df_{u_5}(X, u_5) \) represents the derivative of \(f_{u_5}(X, u_5) \) with respect to \(X = (x, y, z, w)^T \). Further, it is observed that

\[Df_{u_5}(E_0, u_5) V[0] = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1^{[0]} \\ u_2 v_1^{[0]} / u_5 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -u_2 v_1^{[0]} \\ 0 \\ 0 \end{pmatrix}, \]

\[(\psi^{[0]})^T [Df_{u_5}(E_0, u_5) V[0]] = -\frac{u_2}{(u_5)^2} v_1^{[0]} \psi_1^{[0]} \neq 0. \]

Now, by substituting \(V[0] \) in (3.1) we get:

\[D^2 f(E_0, u_5)(V[0], V[0]) = \begin{pmatrix} -2 \left(\frac{u_2}{u_5} \right)^2 (\psi_1^{[0]})^2 \\ 0 \\ 0 \\ 0 \end{pmatrix}. \]

Hence, it is obtained that:

\[(\psi^{[0]})^T D^2 f(E_0, u_5)(V[0], V[0]) = -2 \left(\frac{u_2}{u_5} \right)^2 (\psi_1^{[0]})^2 \psi_1^{[0]} \neq 0. \]

Thus, according to Sotomayor’s theorem system (2) has transcritical bifurcation but not experience a pitchfork bifurcation at \(E_0 \) with the parameter \(u_5 = u_2 \).

Theorem (3.2): Suppose that the following conditions are satisfied:

\[\frac{u_4(1-m)\bar{y}}{u_5} \neq S_2 \tag{3.2 a} \]

\[S_4 \neq S_5 \tag{3.2 b} \]

\[\psi_1^{[1]} \neq u_6 \psi_3^{[i]} \tag{3.2 c} \]

where

\[S_1 = \frac{u_4(1-m)\bar{y} - u_5 S_2}{u_2}, \quad S_2 = \frac{(1-m)[u_4(u_2 + u_3)(u_1 + \bar{x})\bar{y} + u_2 \bar{x}]}{u_2(u_1 + \bar{x})\bar{y}}, \]

\[S_3 = \frac{u_2 + u_3}{u_2}, \quad S_4 = \frac{u_4 (1-m)S_2 S_3 \psi_1^{[1]} - u_1 u_4 (1-m) S_3}{(u_1 + \bar{x})^2 \psi_3^{[i]}}. \]

\[S_5 = \left[\left(\frac{(1-m)S_1}{(u_1 + \bar{x})^2} + S_2 \right)^2 \psi_1^{[1]} + u_7 (1-m) S_2 \psi_3^{[i]} \right]. \]

Then system (2) at the equilibrium point \(E_1 = (\bar{x}, \bar{y}, 0, 0) \) with the parameter \(\bar{u}_b = \frac{u_4(1-m)\bar{y}}{u_1 + \bar{x}} + u_7 (1-m)\bar{y} \) possesses a transcritical or a pitchfork bifurcation but no saddle-node bifurcation can occur at \(E_1 = (\bar{x}, \bar{y}, 0, 0) \).

Proof: According to the Jacobian matrix \(J_1 \) given by eq.(2.8 a) the system (2) at the equilibrium point \(E_1 = (\bar{x}, \bar{y}, 0, 0) \) has zero eigenvalue (say \(\lambda_{1z} = 0 \)) at \(u_8 = \bar{u}_b \), and the Jacobian matrix \(J_1 \) with \(u_8 = \bar{u}_b \) becomes:

\[J_1 = J_1(u_8 = \bar{u}_b) = \begin{vmatrix} -u_2 - u_3 & 1 - 2\bar{y} & -\frac{(1-m)\bar{y}}{u_1 + \bar{x}} & 0 \\ u_2 & -u_5 & -u_4 (1-m) \bar{y} & 0 \\ 0 & 0 & u_2 & 0 \\ 0 & 0 & 0 & -u_10 \end{vmatrix}. \]

Let \(V^{[1]} = \begin{pmatrix} v_1^{[1]} \\ v_2^{[1]} \\ v_3^{[1]} \\ v_4^{[1]} \end{pmatrix} \) be the eigenvector corresponding to the eigenvalue \(\lambda_{1z} = 0 \). Thus \((J_1 - \lambda_{1z} I)V^{[1]} = 0 \), which gives:

\[v_1^{[1]} = S_1 v_3^{[1]}, \quad v_2^{[1]} = -S_2 v_3^{[1]} \text{ and } v_4^{[1]} = 0, \]

where \(v_1^{[1]} \) any nonzero real number.

Clearly, \(S_2 > 0 \), while \(S_1 > 0 \) if the condition (3.2 a) is satisfied, where \(S_1 \) and \(S_2 \) which are mentioned in the state of the theorem.

Let \(\psi^{[1]} = \begin{pmatrix} \psi_1^{[1]} \\ \psi_2^{[1]} \\ \psi_3^{[1]} \\ \psi_4^{[1]} \end{pmatrix} \) be the eigenvector associated with the eigenvalue \(\lambda_{1z} = 0 \) of the matrix \(J_1^T \).
Then we have \((\dot{f}_1 + m)\psi_1[1] = 0\). By solving this equation for \(\psi_1[1]\) we obtain \(\psi_1[1] = \left(\psi_1[1], S_3, \psi_1[1], \psi_1[1], 0\right)^T\), where \(\psi_1[1]\) and \(\psi_3[1]\) are any nonzero real numbers, with \(S_3\) which is mentioned in the state of the theorem.

Now, consider:

\[
\frac{\partial f}{\partial \bar{u}_0} = f_u(X, u_0) = \begin{pmatrix} \frac{\partial f_1}{\partial \bar{u}_0},\frac{\partial f_2}{\partial \bar{u}_0},\frac{\partial f_3}{\partial \bar{u}_0} \end{pmatrix}^T = (0, 0, -z, 0)^T.
\]

So, \(f_u(E_1, \bar{u}_0) = (0, 0, 0, 0)^T\) and hence \((\psi_1[1])^T f_u(E_1, \bar{u}_0) = 0\).

Therefore, according to Sotomayor’s theorem the saddle-node bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied. Now, since

\[
Df_u(X, u_0) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
\]

where \(Df_u(X, u_0)\) Represents the derivative of \(f_u(X, u_0)\) with respect to \(X = (x, y, z, w)^T\). Further, it is observed that

\[
Df_u(E_1, \bar{u}_0)\psi_1[1] = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -S_2 \psi_1[1] \\ 0 \\ -S_1 \psi_1[1] \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},
\]

\[
(\psi_1[1])^T Df_u(E_1, \bar{u}_0)\psi_1[1] = -S_1 \psi_1[1] \neq 0.
\]

Now, by substituting \(\psi_1[1]\) in (3.1) we get:

\[
D^2 f(E_1, \bar{u}_0)(\psi_1[1], \psi_1[1]) = \begin{pmatrix} -2u_4 \left(1-m\right)S_2^2 \left(\psi_1[1]\right)^2 \\
2 \left[u_4 u_6 (1-m)S_1 \left(\psi_1[1]\right)^2 - u_7 (1-m)S_2 \left(\psi_1[1]\right)^2 \right] \\
0 \end{pmatrix}.
\]

Hence, it is obtained that:

\[
(\psi_1[1])^T D^2 f(E_1, \bar{u}_0)(\psi_1[1], \psi_1[1]) = 2[S_4 - S_3]\left(\psi_1[1]\right)^2,
\]

where \(S_4\) and \(S_5\) are mentioned in the state of the theorem.

So, if in addition to the condition (3.2 a), the condition (3.2 b) is satisfied we obtain that:

\[
(\psi_1[1])^T D^2 f(E_1, \bar{u}_0)(\psi_1[1], \psi_1[1]) \neq 0.
\]

Thus, according to Sotomayor’s theorem system (2) has transcritical bifurcation at the equilibrium point \(E_1 = (x, y, 0, 0)\) with the parameter:

\[
\bar{u}_0 = \frac{u_4(1-m)x}{(u_4 + x)} + u_7 (1-m)y.
\]

Now, by reserving the condition (3.2 b) and substituting \(\psi_1[1]\) in (3.2) we get:

\[
D^3 f(\psi_1[1], \psi_1[1], \psi_1[1]) = \begin{pmatrix} \frac{6u_4 (1-m)S^2 \left(\psi_1[1]\right)^3}{(u_4 + x)^3} \\
0 \\
-6 u_4 u_6 (1-m)S_1^2 \left(\psi_1[1]\right)^3 \end{pmatrix}.
\]

So,

\[
(\psi_1[1])^T D^3 f(E_1, \bar{u}_0)(\psi_1[1], \psi_1[1], \psi_1[1]) = \frac{6u_4 (1-m)S^2 \left(\psi_1[1] - u_6 \psi_3[1]\right)^3}{(u_4 + x)^3}.
\]

So, if the condition (3.2 c) is satisfied we obtain that:

\[
(\psi_1[1])^T D^3 f(E_1, \bar{u}_0)(\psi_1[1], \psi_1[1], \psi_1[1]) \neq 0.
\]

Thus, according to Sotomayor’s theorem system (2) has a pitchfork bifurcation at the equilibrium point \(E_1 = (x, y, 0, 0)\) with the parameter:
A food chain across a refuge stage-structure prey-predator model

\[\bar{u}_0 = \frac{u_0(1 - m)x}{(u_1 + x)} + u_r(1 - m)y. \]

Theorem (3.3): Suppose that the following conditions are satisfied:

\[-\frac{c_{11}x}{c_{12}} < \hat{y} < \frac{1}{2} \]

\[K_1 \neq \frac{2}{R_2} \]

\[\hat{z} \neq \frac{(u_1 + x)R_3}{R_1} \]

where:

\[R_1 = \hat{z} \left[c_{21}c_{13} - c_{23}c_{12} \right], \quad R_2 = \hat{z} \left[c_{11}c_{23} - c_{13}c_{21} \right], \]

\[R_3 = \hat{z} \left[c_{12}c_{21} - c_{11}c_{22} \right], \quad R_4 = c_{31} \left[c_{22}c_{13} - c_{12}c_{23} \right] + c_{32} \left[c_{11}c_{23} - c_{13}c_{21} \right], \]

with,

\[K_1 = \frac{u_1(1 - m)R_1^2}{(u_1 + x)^2} \frac{\hat{z}}{R_4} \psi_1^{[2]} + u_2R_3\psi_4^{[2]}, \]

\[K_2 = \left[\frac{u_1(1 - m)R_1R_3}{(u_1 + x)^2} + R_2 - \frac{c_{11}u_4(1 - m)R_2R_3}{u_2} \right] \psi_1^{[2]}. \]

Then system (2) at the free top-predator's equilibrium point \(E_2 = (\hat{x}, \hat{y}, \hat{z}, 0) \) with the parameter \(\hat{u}_{10} = u_0\hat{z} \) possesses a transcritical or a pitchfork bifurcation but no saddle-node bifurcation can occur at \(E_2 = (\hat{x}, \hat{y}, \hat{z}, 0) \).

Proof: According to the Jacobian matrix \(f_2 \) given by eq. (2.9) at the equilibrium point \(E_2 \) has zero eigenvalue (say \(\lambda_{2w} = 0 \)) at \(u_{10} = \hat{u}_{10} \), and the Jacobian matrix \(f_2 \) with \(u_{10} = \hat{u}_{10} \) becomes:

\[f_2 = f_2 (u_{10} = \hat{u}_{10}) = [\hat{c}_{ij}]_{4 \times 4}, \]

where \(\hat{c}_{ij} = c_{ij} \) for all \(i, j = 1, 2, 3, 4 \) except \(\hat{c}_{44} = 0 \).

Let \(\psi^{[2]} = (\psi_1^{[2]}, \psi_2^{[2]}, \psi_3^{[2]}, \psi_4^{[2]})^T \) be the eigenvector corresponding to the eigenvalue \(\lambda_{2w} = 0 \). Thus \((f_2 - \lambda_{2w}I)\psi^{[2]} = 0 \), which gives:

\[\psi_1^{[2]} = \frac{R_1}{R_4}\psi_4^{[2]}, \quad \psi_2^{[2]} = \frac{R_2}{R_4}\psi_4^{[2]}, \quad \psi_3^{[2]} = \frac{R_3}{R_4}\psi_4^{[2]}, \]

where \(\psi_4^{[2]} \) is any nonzero real number. with \(R_i ; i = 1, 2, 3, 4 \) which are mentioned in the state of the theorem.

Clearly, \(R_2 > 0 \), while \(R_i > 0 ; i = 1, 3, 4 \) if the condition (3.3.a) is satisfied.

Let \(\psi^{[2]} = (\psi_1^{[2]}, \psi_2^{[2]}, \psi_3^{[2]}, \psi_4^{[2]})^T \) be the eigenvector associated with the eigenvalue \(\lambda_{2w} = 0 \) of the matrix \(f_2^T \). Then we have \((f_2^T - \lambda_{2w}I)\psi^{[2]} = 0 \). By solving this equation for \(\psi^{[2]} \) we obtain, \(\psi^{[2]} = (\psi_1^{[2]}, -\frac{c_{11}}{u_2}\psi_1^{[2]}, 0, \psi_4^{[2]})^T \), where \(\psi_1^{[2]} \) and \(\psi_4^{[2]} \) are any nonzero real numbers.

Now, consider:

\[\frac{\partial f}{\partial u_{10}} = f_{u_{10}} (X, u_{10}) = \left(\frac{\partial f_1}{\partial u_{10}}, \frac{\partial f_2}{\partial u_{10}}, \frac{\partial f_3}{\partial u_{10}}, \frac{\partial f_4}{\partial u_{10}} \right)^T = (0, 0, 0, -w)^T. \]

So, \(f_{u_{10}} (E_2, \hat{u}_{10}) = (0, 0, 0, 0)^T \) and hence \((\psi^{[2]})^T f_{u_{10}} (E_2, \hat{u}_{10}) = 0 \).

Therefore, according to Sotomayor’s theorem the saddle-node bifurcation cannot occur. While the first condition of transcritical bifurcation is satisfied. Now, since

\[Df_{u_{10}} (X, u_{10}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \]

where \(Df_{u_{10}} (X, u_{10}) \) represents the derivative of \(f_{u_{10}} (X, u_{10}) \) with respect to \(X = (x, y, z, w)^T \).

Further, it is observed that
\[D_{\bar{u}t_10} (E_2 , \bar{u}_{t10}) v^{[2]} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{\partial v}{\partial u_1} \\ \frac{\partial v}{\partial u_2} \\ \frac{\partial v}{\partial u_3} \\ \frac{\partial v}{\partial \bar{u}_4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -v_4^{[2]} \end{pmatrix}. \]

Now, by substituting \(v^{[2]} \) in (3.1) we get:
\[D^2 f(E_2 , \bar{u}_{t10})(v^{[2]} , v^{[2]}) = \begin{bmatrix} \square_{ij} \end{bmatrix}_{4\times 1}, \]
where:
\[
\square_{11} = 2 R_4^2 u_9 (1 - m) \theta_1 (u_4 + \bar{u}) \left(\frac{R_1 \bar{z}}{u_4 + \bar{u}} - R_3 \right) - R_2^2 \left(v_4^{[2]} \right)^2
\]
\[
\square_{21} = -\frac{2}{R_4^2} \left[u_9 \left(u_1 - m \right) R_2 R_3 \left(v_4^{[2]} \right)^2 \right]
\]
\[
\square_{31} = \frac{2}{R_4} \left[u_9 u_6 \left(1 - m \right) R_3 \left(R_3 - \frac{R_1 \bar{z}}{u_4 + \bar{u}} + R_3 \left(\frac{u_7 (1 - m) R_2}{R_4} - 1 \right) \left(v_4^{[2]} \right)^2 \right) \right]
\]
\[
\square_{41} = \frac{2}{R_4} \left[u_9 R_3 \left(v_4^{[2]} \right)^2 \right].
\]

Hence, it is obtained that:
\[\left(\psi^{[2]} \right)^T D^2 f(E_2 , \bar{u}_{t10})(v^{[2]} , v^{[2]}) = \frac{2}{R_4} \left(K_1 - K_2 \right) \left(v_4^{[2]} \right)^2. \]

with, \(K_2 \) and \(K_3 \) are mentioned in the state of the theorem.

So, according to the condition (3.3 b) we obtain that:
\[\left(\psi^{[2]} \right)^T D^2 f(E_2 , \bar{u}_{t10})(v^{[2]} , v^{[2]}) \neq 0. \]

Thus, by using Sotomayor’s theorem system (2) has transcritical bifurcation at the free top-predator's equilibrium point \(E_2 = (\bar{x}, \bar{y}, \bar{z}, 0) \) with the parameter \(\bar{u}_{t10} = u_9 \bar{z} \).

Now, by reserving the condition (3.3 b) and substituting \(v^{[2]} \) in (3.2) we get:
\[D^3 f(E_2 , \bar{u}_{t10})(v^{[2]} , v^{[2]} , v^{[2]}) = \begin{bmatrix} l_{ij} \end{bmatrix}_{4\times 1}, \]
where:
\[
l_{11} = \frac{6u_9 (1 - m) R_2^2}{(u_4 + \bar{u})^2} \left[R_3 - \frac{R_1 \bar{z}}{u_4 + \bar{u}} \right] \left(v_4^{[2]} \right)^3, \quad l_{21} = 0,
\]
\[
l_{31} = \frac{6u_9 u_6 (1 - m) R_3^2}{(u_4 + \bar{u})^3} \left[\frac{R_1 \bar{z}}{u_4 + \bar{u}} - R_3 \right] \left(v_4^{[2]} \right)^3, \quad l_{41} = 0,
\]

So,
\[\left(\psi^{[2]} \right)^T D^3 f(v^{[2]} , v^{[2]} , v^{[2]}) = l_{11} \psi_1^{[2]}. \]

So, according to the condition (3.3 c) we obtain that:
\[\left(\psi^{[2]} \right)^T D^3 f(v^{[2]} , v^{[2]} , v^{[2]}) \neq 0. \]

Thus, by using Sotomayor’s theorem system (2) has a pitchfork bifurcation at the free top-predator's equilibrium point \(E_2 = (\bar{x}, \bar{y}, \bar{z}, 0) \) with the parameter \(\bar{u}_{t10} = u_9 \bar{z} \).

Theorem (3.4): Suppose that the following conditions are satisfied:

\[
y^* < \frac{1}{2}, \tag{3.4 a}\]
\[
u_2 > \frac{u_4 (1 - m) F z^*}{(1 - 2 y^*) (u_2 + u_3) (u_1 + x^*)^2}, \tag{3.4 b}\]
\[
u_1 (1 - m) L_2 z^* \neq 1, \tag{3.4 c}\]

where:
\[
F = u_1 (1 - m) z^* + (u_2 + u_3) (u_1 + x^*)^2,
\]
\[
L_1 = \frac{(1 - 2 y^*) (u_1 + x^*)^2}{F}, \quad L_2 = \frac{(1 - m) [u_1 u_6 (1 - 2 y^*) + u_7 F]}{F}
\]
\[
L_3 = \frac{u_2 (u_1 + x^*)^2}{F}, \quad L_4 = \frac{(1 - m) [u_2 (u_1 + x^*) x^* + u_4 y^* F]}{u_9 w^* F}
\]

Then system (2.2) at the equilibrium point \(E_3 = (x^* , y^* , z^* , w^*) \) with the
Consider the characteristic equation (10 b) which is given in [8] in order to investigate the occurrence of the Hopf bifurcation.

Proof: The characteristic equation given by eq. (2.10 b) having zero eigenvalue (say \(\lambda_2 = 0 \)) if and only if \(B_4 = 0 \) and then \(E_3 \) becomes a non-hyperbolic equilibrium point. Clearly the Jacobian matrix of system (2.2) at the equilibrium point \(E_3 \) with parameter \(u_5 = u_5^* \) becomes:

\[
J^* = J(u_5 = u_5^*) = \begin{bmatrix}
 d_{ij}^*
end{bmatrix}_{4 \times 4}
\]

where, \(d_{ij}^* = d_{ij} \) for all \(i, j = 1, 2, 3, 4 \) except \(d_{ij} \) which is given by:

\[
d_{22}^* = -u_5^* - u_4(1-m)z^*.
\]

Note that, \(u_5^* > 0 \) provided that conditions (3.4 a) and (3.4 b) hold.

Let \(V^{[3]} = (v_1^{[3]}, v_2^{[3]}, v_3^{[3]}, v_4^{[3]})^T \) be the eigenvector corresponding to the eigenvalue \(\lambda_2 = 0 \). Thus \((J_3^* - \lambda_2 I) v^{[3]} = 0 \), which gives:

\[
V^{[3]} = (L_1 v_2^{[3]}, v_2^{[3]}, 0, L_2 v_2^{[3]})^T, \text{ where } v_2^{[3]} \text{ any nonzero real number, with } L_1 \text{ and } L_2 \text{ which are mentioned in the state of the theorem.}
\]

Clearly, \(L_1 \) and \(L_2 \) are positive under the condition (3.4 a).

Let \(\Psi^{[3]} = (\psi_1^{[3]}, \psi_2^{[3]}, \psi_3^{[3]}, \psi_4^{[3]})^T \) be the eigenvector associated with the eigenvalue \(\lambda_2 = 0 \) of the matrix \(J_3^T \). Then we have \((J_3^T - \lambda_2 I) \Psi^{[3]} = 0 \). By solving this equation for \(\Psi^{[3]} \) we obtain:

\[
\Psi^{[3]} = (L_3 \psi_2^{[3]}, \psi_2^{[3]}, 0, L_4 \psi_2^{[3]})^T, \text{ where } \psi_2^{[4]} \text{ any nonzero real number, with } L_3 \text{ and } L_4 \text{ which are mentioned in the state of the theorem.}
\]

Now,

\[
\frac{\partial f}{\partial u_5} = f_{u_5}(X, u_5) = \begin{bmatrix}
 \frac{\partial f_1}{\partial u_5}, \frac{\partial f_2}{\partial u_5}, \frac{\partial f_3}{\partial u_5}, \frac{\partial f_4}{\partial u_5}
end{bmatrix}^T = (0, -y, 0, 0)^T.
\]

So,

\[
f_{u_5}^T(E_3, u_5^*) = (0, -y^*, 0, 0)^T,
\]

and hence \((\Psi^{[3]})^T f_{u_5}(E_3, u_5^*) = -y^* \psi_2^{[3]} \neq 0 \).

Therefore, according to Sotomayor’s theorem neither a transcritical nor a pitchfork bifurcation can occur at \(E_3 \), while the first condition of a saddle-node bifurcation is satisfied.

Moreover, by substituting \(V^{[3]} \) in (3.1) we get:

\[
D^2 f(E_3, u_5^*)(V^{[3]}, V^{[3]}) =
\begin{bmatrix}
 2 \left[u_1 (1-m) L_1^2 z^* - \frac{1}{(u_1 + x^*)^3} \right] (v_2^{[3]})^2 \\
 0 \\
 -2 \left[u_1 u_0 (1-m) L_2^2 z^* - \frac{1}{(u_1 + x^*)^3} \right] (v_2^{[3]})^2 \\
 0
\end{bmatrix}.
\]

Hence, it is obtained that:

\[
(\Psi^{[3]})^T D^2 f(E_3, u_5^*)(V^{[3]}, V^{[3]}) = 2 \left[u_1 (1-m) L_1^2 z^* - \frac{1}{(u_1 + x^*)^3} \right] L_3 (v_2^{[3]})^2 \psi_2^{[3]}.
\]

So, according to the condition (3.4 c) we obtain that:

\[
(\Psi^{[3]})^T D^2 f(E_3, u_5^*)(V^{[3]}, V^{[3]}) \neq 0
\]

Thus, by using Sotomayor’s theorem system (2.2) has a saddle-node bifurcation at \(E_3 = (x^*, y^*, z^*, w^*) \) with the parameter:

\[
u_5^* = \frac{u_2(1 - 2y^*)(u_1 + x^*)^2 - u_4(1-m)z^*F}{F}.
\]

The Hopf bifurcation analysis of system (2)

The occurrence of a Hopf bifurcation around the coexistence (positive) equilibrium point \(E_3 \) of system (2) is discussed in this section.

Firstly, we need to know that the Hopf bifurcation for \(n = 4 \) is structured according to the Haque and Venturino method [8] in order to investigate the occurrence of the Hopf bifurcation.

Consider the characteristic equation (10 b) which is given in [6]:

\[
P_q(\lambda) = \lambda^4 + B_3 \lambda^3 + B_2 \lambda^2 + B_1 \lambda + B_4 = 0,
\]

527
here $B_1 = -tr(J(x^*))$, $B_2 = M_1(J(x^*))$, $B_3 = -M_2(J(x^*))$ and
$B_4 = det(J(x^*))$ with $M_1(J(x^*))$ and $M_2(J(x^*))$ represent the sum of the
principal minors of order two and three of $J(x^*)$ respectively.

Clearly, the first condition of Hopf bifurcation satisfies if and only if:

$$B_1 > 0; \; i = 1,3,4 \; \Delta_1 = B_1 B_2 - B_3 > 0, B_1^2 - 4 \Delta_1 > 0$$

and $\Delta_2 = B_3 (B_1 B_2 - B_3) - B_2^2 B_4 = 0$. Consequently, $B_4 = \frac{B_3 (B_1 B_2 - B_3)}{B_1^2}$.

So, the characteristic equation becomes:

$$P_4(\lambda) = \left(\lambda^2 + \frac{B_1}{B_2} \right) \left(\lambda^2 + B_1 \lambda + \frac{\Delta_1}{B_1} \right) = 0$$ \hspace{1cm} (4.1)

Clearly, the roots of eq. (4.1) are:

$$\lambda_{1,2} = \pm i \frac{B_3}{B_1} \quad \text{and} \quad \lambda_{3,4} = \frac{1}{2} \left(-B_1 \pm \sqrt{B_1^2 - 4 \Delta_1} \right).$$

Now, in order to verify the transversality condition of Hopf bifurcation, we substitute $\lambda(\mu) = \epsilon_1(\mu) \mp i \epsilon_2(\mu)$ into eq. (4.1), and then calculating its derivative with respect to the bifurcation parameter μ, $P_4'(\lambda(\mu)) = 0$, comparing the two sides of this equation and then equating their real and imaginary parts, we have:

$$\Psi'(\mu) \epsilon_1(\mu) - \Phi'(\mu) \epsilon_2(\mu) + \Theta'(\mu) = 0$$

$$\Phi'(\mu) \epsilon_1(\mu) + \Psi'(\mu) \epsilon_2(\mu) + \Gamma'(\mu) = 0$$

Where:

$$\Psi'(\mu) = 4(\epsilon_1(\mu))^2 + 3B_1(\mu)(\epsilon_1(\mu))^2 + B_3(\mu) + 2B_2(\mu) \epsilon_1(\mu)$$

$$-12 \epsilon_1(\mu)(\epsilon_2(\mu))^2 - 3B_1(\mu)(\epsilon_2(\mu))^2$$

$$\Phi'(\mu) = 12(\epsilon_1(\mu))^2 \epsilon_2(\mu) + 6B_1(\mu) \epsilon_1(\mu) \epsilon_2(\mu) + 2B_2(\mu) \epsilon_2(\mu)$$

$$-4(\epsilon_2(\mu))^3$$

$$\Theta'(\mu) = (\epsilon_1(\mu))^3 B_1(\mu) + B_3(\mu) \epsilon_1(\mu) + B_2(\mu) (\epsilon_1(\mu))^2$$

$$+ B_4(\mu) + 3B_1(\mu) \epsilon_1(\mu) (\epsilon_2(\mu))^2 - B_4(\mu) (\epsilon_2(\mu))^2$$

$$\Gamma'(\mu) = 3B_1(\mu)(\epsilon_1(\mu))^2 \epsilon_2(\mu) + B_3(\mu) \epsilon_2(\mu) + 2B_2(\mu) \epsilon_1(\mu) \epsilon_2(\mu)$$

$$-B_4(\mu) (\epsilon_2(\mu))^3$$

Solving the linear system (4.2) by using Cramer's rule for the unknowns $\epsilon_1'(\mu)$ and $\epsilon_2'(\mu)$, gives that:

$$\epsilon_1'(\mu) = \frac{\Theta'(\mu) \Psi'(\mu) + \Gamma'(\mu) \Phi'(\mu)}{(\Psi'(\mu))^2 + (\Phi'(\mu))^2}$$

and

$$\epsilon_2'(\mu) = -\frac{\Gamma'(\mu) \Psi'(\mu) + \Theta'(\mu) \Phi'(\mu)}{(\Psi'(\mu))^2 + (\Phi'(\mu))^2}.$$
A food chain across a refuge stage-structure prey-predator model

Straightforward computation gives that:
\[B_i(u_{r^+}) > 0 \quad ; \quad i = 1,3,4 \] and \(\Delta_i(u_{r^+}) > 0 \) under the following locally conditions (10 c), (10 d) and (10 e) that given in [6] which are:

\[y^* < \frac{1}{2}, \]

\[w^* > \frac{u_1u_4u_6(1-m)^2(2y^* - 1)y^2}{u_0[u_4(1-m)y^* + [(u_2 + u_3)y^* + u_2x^*](u_1 + x^*)^2]}, \]

\[\frac{u_1u_2(2y^* - 1)}{u_1(1-m)} < u_0^2(1-m)(u_2 + u_3)[(u_1 + x^*)^2] < u_0^2(u_1 + x^*)^4 \]

while \(B_3^2 \left(u_{r^+} \right) - 4 \Delta_3 \left(u_{r^+} \right) > 0 \) provided that the condition (4.4 b) holds.

On the other hand, it is observed that \(\Delta_2 = 0 \) gives that:

\[B_3 \left(B_1B_2 - B_3 \right) - B_3^2B_4 = 0 \]

Straightforward computation we get:

\[N_1 u_{r^+}^2 + N_2 u_{r^+} + N_3 = 0, \quad \text{(4.4 c)} \]

where:

\[N_1 = P_1 (1 - m)^2 z^2, \quad N_2 = P_2 (1 - m) z^*, \]

\[N_3 = \alpha_0 (\alpha_2 - \alpha_0) d_{23} \sigma_0 - \alpha_0 \alpha_6 + \alpha_1 (\alpha_6 + \alpha_5 - \alpha_6), \]

with,

\[P_1 = (d_{11}d_{23} + d_{13}d_{21}), \]

\[P_2 = [\alpha_0 (\alpha_2 - \alpha_0) + d_{11} \alpha_5]d_{23} + d_{13}d_{21} + [\alpha_6 (\alpha_6 + \alpha_5 - \alpha_6) + d_{11} \alpha_5]d_{23} + d_{13}d_{21}. \]

Clearly, \(N_1 < 0 \) and \(N_3 > 0 \) provided that in addition to the locally conditions (10 c) and (10 d), the condition (4.4 a) holds.

Note that, the condition (4.4 a) guarantees that the last term of \(P_1 \) is negative while the first term of \(N_3 \) is positive.

So, the eq. (4.4 c) has a unique positive root:

\[u_{r^+} = \frac{1}{2N_1} \left(-N_2 + \sqrt{N_2^2 - 4N_1N_3} \right) \]

Now, at \(u_7 = u_{r^+} \) the characteristic equation given by eq. (10 b) given in [6] can be written as:

\[\left(\lambda^2 + \frac{B_3}{B_1} \right) \left(\lambda^2 + B_1 \lambda + \frac{A_1}{B_1} \right) = 0, \quad \text{which has four roots}, \]

\[\lambda_{1,2} = \pm i \left(\frac{B_3}{B_1} \right) \quad \text{and} \quad \lambda_{3,4} = \frac{1}{2} \left(-B_1 \pm \sqrt{B_1^2 - 4 \frac{A_1}{B_1}} \right). \]

Clearly, at \(u_7 = u_{r^+} \) there are two pure imaginary eigenvalues (\(\lambda_1 \) and \(\lambda_2 \)) and two eigenvalues which are real and negative. Now for all values of \(u_7 \) in the neighborhood of \(u_{r^+} \), the roots in general of the following form:

\[\lambda_1 = \varepsilon_1 + i \varepsilon_2, \lambda_2 = \varepsilon_1 - i \varepsilon_2, \quad \lambda_{3,4} = \frac{1}{2} \left(-B_1 \pm \sqrt{B_1^2 - 4 \frac{A_1}{B_1}} \right). \]

Clearly, \(\text{Re} \left(\lambda_k (a_2) \right) \big|_{u_7 = u_{r^+}} = \varepsilon_1 (u_{r^+}) = 0, k = 1,2 \) that means the first condition of the necessary and sufficient conditions for Hopf bifurcation is satisfied at \(u_7 = u_{r^+} \).

Now, according to verify the transversality condition we must prove that:

\[\Theta^{\prime} (u_{r^+}) \Psi^{\prime} (u_{r^+}) + \Gamma^{\prime} (u_{r^+}) \Phi^{\prime} (u_{r^+}) \neq 0 \quad , \]

where \(\Theta^{\prime}, \Psi^{\prime}, \Gamma^{\prime} \) and \(\Phi^{\prime} \) are given in (4.3). Note that for \(u_7 = u_{r^+} \) we have \(\varepsilon_1 (u_{r^+}) = 0 \) and \(\varepsilon_2 (u_{r^+}) = \frac{B_1}{B_3} \frac{\varepsilon_2 (u_{r^+})}{B_1 B_2 - 2} \), substituting into (4.3) gives the following simplifications:

\[\Psi^{\prime} (u_{r^+}) = -2 B_3 (u_{r^+}) , \quad \Phi^{\prime} (u_{r^+}) = 2 \frac{\varepsilon_2 (u_{r^+})}{B_1 B_2 - 2} B_3 , \]

\[\Theta^{\prime} (u_{r^+}) = B_3 (u_{r^+}) - \frac{B_3}{B_1} B_1 (u_{r^+}) , \]

\[\Gamma^{\prime} (u_{r^+}) = \frac{B_3}{B_1} (u_{r^+}) - \frac{B_3}{B_1} B_1 (u_{r^+}) , \]

529
where: \(B_1' = \frac{dB_1}{du_7} \bigg|_{u_7 = u_7^*} = 0 \), \(B_2' = \frac{dB_2}{du_7} \bigg|_{u_7 = u_7^*} = -d_{23} (1 - m) z^*, \)

\(B_3' = \frac{dB_3}{du_7} \bigg|_{u_7 = u_7^*} = (d_{11} d_{23} - d_{13} d_{21})(1 - m) z^*, \)

\(B_4' = \frac{dB_4}{du_7} \bigg|_{u_7 = u_7^*} = 0. \)

Then by using eq. (4.4) we get that:

\[
\theta'(u_7^*) \Psi'(u_7^*) + \Gamma'(u_7^*) \Phi'(u_7^*) = P_3 + P_4 \neq 0,
\]

where:

\[
P_3 = -2d_{23}(1 - m)z^* B_3^2,
\]

\[
P_4 = 2e_2^2(u_7^*)(1 - m)z^*(d_{11}d_{23} - d_{13}d_{21})(B_1B_2 - 2B_3).
\]

Now, according to condition (4.4 b) we have:

\[
\theta'(u_7^*) \Psi'(u_7^*) + \Gamma'(u_7^*) \Phi'(u_7^*) \neq 0.
\]

So, we obtain that the Hopf bifurcation occurs around the equilibrium point \(E_3 \) at the parameter \(u_7 = u_7^* \).

Numerical analysis of system (2) [6]

In this section, the dynamical behavior of system (2) is studied numerically for a set of parameters which is given by (5.1) and different sets of initial points which is given in [6]. Our obtained results were confirmed in the previous sections numerically by using Runge Kutta method along with predictor corrector method which represents the first objective of this numerical simulations study, while the second objective is to check the existence of the bifurcation near the equilibrium points which is given [6].

\[
\begin{align*}
 u_1 &= 0.6, u_2 = 0.4, u_3 = 0.1, u_4 = 0.5, u_5 = 0.1, u_6 = 0.3, \\
 u_7 &= 0.3, u_8 = 0.1, u_9 = 0.5, u_{10} = 0.1, m = 0.5.
\end{align*}
\]

System (2) is solved numerically for the data given in (5.1) with varying one parameter at each time which results the following outputs that represent the numerical bifurcation of system (2):

- By varying one of the parameters \(u_i, i = 1, 2, 4 \) and 6 (which represent the half saturation rate of mid-predator upon immature prey, the growth rate parameter of immature prey, the predation rate of mid-predator upon immature prey and the conversion rate from immature prey to mid-predator respectively) each time and keeping the rest of parameters as data given in (5.1) results that the solution of system (2) approaches asymptotically to the positive equilibrium point \(E_3 \), on the other word these parameters did not play a vital role in the bifurcation analysis of system (2) within the set of parameters given in (5.1). (For more details see [6]).

Varying the natural death rate of immature prey parameter \(u_3 \) in the range \(0.01 \leq u_3 < 0.90 \) it is observed that the solution of system (2.2) approaches asymptotically to the positive equilibrium point \(E_3 \), while increasing this parameter for \(0.90 \leq u_3 < 1 \) causes that the solution of system (2) approaches asymptotically to \(E_2 = (\xi, \eta, \zeta, 0) \) in the interior of the positive quadrant of \(xyz \) – space, thus, the parameter \(u_3 \) when \(u_3 = 0.90 \) is a bifurcation point as shown in Fig.(5.1) for the typical value of \(u_3 = 0.85 \) and the bifurcation point \(u_3 = 0.90 \).

Fig (5.1): (a): Time series of the solution of system (2) for the data given by (5.1) with \(u_3 = 0.85 \) which approaches to \(E_3 = (0.18, 0.48, 0.2, 0.007) \) in the interior of \(R^4_+ \). (b): Time series of the solution of system (2) for the data given by
(5.1) with the bifurcation point $u_3 = 0.90$ which approaches to $E_2 = (0.17, 0.44, 0.2, 0)$ in the interior of the positive quadrant of xyz-space.

- Varying the mature prey natural death rate parameter u_5 in the range $0.01 \leq u_5 < 0.41$ causes that the solution of system (2) approaches asymptotically to a positive equilibrium point E_3, however increasing this parameter in the range $0.41 \leq u_5 < 0.58$ causes extinction in the top-predator and the solution of system (2) approaches asymptotically to $E_2 = (\bar{x}, \bar{y}, \bar{z}, 0)$ in the interior of the positive quadrant of xyz-space. Further increasing in the range $0.58 \leq u_5 < 0.8$ causes extinction in the mid-predator and the solution of system (2) approaches asymptotically to the free predators equilibrium point $E_4 = (\bar{x}, \bar{y}, 0, 0)$ in the interior of the positive quadrant of xy-plane, then more increasing of this parameter in the range $0.8 \leq u_5 < 1$ causes extinction in all species and the solution of system (2) approaches asymptotically to the vanishing equilibrium point $E_0 = (0, 0, 0, 0)$, thus, the parameter u_5 when $u_5 = 0.41$, $u_5 = 0.58$ and $u_5 = 0.8$ is a bifurcation point as shown in Fig.(5.2) for the typical value of $u_5 = 0.38$ and the bifurcation point $u_5 = 0.41$.

Fig (5.2): (a): Time series of the solution of system (2) for the data given by (5.1) with $u_5 = 0.38$, approaches to $E_3 = (0.37, 0.35, 0.2, 0.01)$ in the interior of R^4_+. (b): Time series of the solution of system (2) for data given by (5.1) with the bifurcation point $u_5 = 0.41$ approaches asymptotically stable to $E_2 = (0.36, 0.31, 0.2, 0)$ in the positive quadrant of xyz-space. (c): Time series of the solution of system (2) for data given by (5.1) with the bifurcation point $u_5 = 0.58$ approaches asymptotically stable to $E_2 = (0.39, 0.27, 0, 0)$. (d): Time series of the solution of system (2) for data given by (5.1) with the bifurcation point $u_5 = 0.8$ approaches asymptotically stable to $E_0 = (0, 0, 0, 0)$.

- For varying the conversion rate parameter from the mature prey to the mid-predator u_7, with $0.01 \leq u_7 < 0.15$ the solution of system (2) approaches asymptotically to the positive free predators equilibrium point $E_3 = (\bar{x}, \bar{y}, \bar{z}, 0)$ in the interior of the positive quadrant of xy-plane, while for $u_7 = 0.15$ the solution of system (2) approaches asymptotically to $E_2 = (\bar{x}, \bar{y}, \bar{z}, 0)$ in the interior of the positive quadrant of xyz-space, which means revival of the mid-predator population, then increasing this parameter in the range $0.15 \leq u_7 < 0.20$ leads revival of the top-predator and a small periodic attractor appears, for more increasing in the range $0.20 \leq u_7 < 0.5$ the solution of system (2) approaches asymptotically to a positive equilibrium point E_3, thus, the parameter u_7 when $u_7 = 0.15$ and $u_7 = 0.20$ is a bifurcation point as shown in Fig.(5.3) for the bifurcation points $u_7 = 0.15$, $u_7 = 0.20$ and the typical values $u_7 = 0.16$ and $u_7 = 0.19$.

531
Fig(5.3):- Time series of the solution of system (2) for the data given by (5.1) with different values of u_7, (a): $E_1 = (0.21, 0.87, 0, 0)$ is asymptotically stable with $u_7 = 0.14$, (b): $E_2 = (0.32, 0.63, 0.4, 0)$ is a asymptotically stable with $u_7 = 0.15$, (c): periodic attractor with $u_7 = 0.16$, (d): $E_3 = (0.28, 0.77, 0.2, 0.02)$ is a asymptotically stable with the bifurcation point $u_7 = 0.20$.

- The varying of the mid-predator natural death rate parameter u_8 in the range $0.01 \leq u_8 < 0.16$ the solution of system(2) approaches asymptotically to the positive equilibrium point E_3, further increasing of this parameter with $u_8 = 0.16$ which causes extinction in the top-predator and the solution of system (2) approaches asymptotically to $E_2 = (x, y, 2, 0)$ in the interior of the positive quadrant of $xyz-$ space, while for $0.17 \leq u_8 < 1$ causes the extinction of the mid – predator the solution of system (2) approaches asymptotically to $E_1 = (x, y, 0, 0)$ in the interior of the positive quadrant of $xy-$ plane, thus, the parameter u_8 when $u_8 = 0.16$ and $u_8 = 0.17$ is a bifurcation point as shown in Fig.(5.4) , for typical value $u_8 = 0.15$ and the bifurcation points $u_8 = 0.16$ and $u_8 = 0.17$.

null
A food chain across a refuge stage-structure prey-predator model

Fig(5.4) (a): Time series of the solution of system (2) for the data given by (5.1) with \(u_9 = 0.15 \), which approaches to \(E_3 = (0.28,0.77,0.2,0.01) \). (b): Time series of the solution of system (2) for the data given by (5.1) with \(u_8 = 0.16 \), which approaches to \(E_2 = (0.30,0.73,0.26,0) \) in the interior of the positive quadrant of \(xyz - space \). (c): Time series of the solution of system (2) for the data given by (5.1) with \(u_8 = 0.17 \), which approaches to \(E_1 = (0.21,0.87,0,0) \) in the interior of the positive quadrant of \(xyz - plane \).

- Varying of the conversion rate of predation parameter of the top-predator upon the mid-predator in the range \(0.01 \leq u_9 < 0.15 \) the solution of system (2.2) approaches asymptotically to \(E_2 = (\bar{x},\bar{y},\bar{z},0) \) in the interior of the positive quadrant of \(xyz - space \), while for \(0.15 \leq u_9 < 1 \), the top-predator population revives and the solution of system (2) approaches asymptotically to a positive equilibrium point \(E_3 \), as shown in as shown in Figs.(6.7) a and (6.7) b , for typical values 0f \(u_9 \) (see [6]).

- The increasing the natural death rate of top-predator parameter \(u_{10} \) in the range 0.1 \leq u_{10} < 0.35 , the solution of system (2) approaches asymptotically to a positive equilibrium point \(E_3 \), while the increasing of this parameter for 0.35 \leq u_{10} < 1 causes extinction of the top-predator population and the solution of system (2) approaches asymptotically to \(E_2 = (\bar{x},\bar{y},\bar{z},0) \) in the interior of the positive quadrant of \(xyz - space \), thus, the parameter \(u_{10} \) when \(u_{10} = 0.35 \) is a bifurcation point as shown in Fig.(5.5) , for typical value \(u_{10} = 0.33 \) and the bifurcation point \(u_{10} = 0.35 \).

Fig(5.5):- (a): Time series of the solution of system (2) for the data given by (5.1) with \(u_{10} = 0.33 \), which approaches to \(E_3 = (0.27,0.41,0.66,0.01) \) in the interior of \(R^4_+ \). (b): Time series of the solution of system (2) for the data given by (5.1) with \(u_{10} = 0.35 \), which approaches to \(E_2 = (0.25,0.37,0.7,0) \) in the interior of the positive quadrant of \(xyz - space \).

- Finally, varying the number of prey inside the refuge parameter \(m \) and keeping the rest of parameters values as data given in (5.1), it is observed that for 0.01 \leq m < 0.63 the solution of system (2) approaches asymptotically to the positive equilibrium point \(E_3 \), while increasing this parameter in the range 0.63 \leq m < 0.69 leads that the solution of system (2) approaches asymptotically to a periodic dynamics in Int. \(R^4_+ \), more increasing of this parameter in the range 0.69 \leq m < 0.71 causes extinction of the top-predator population and the solution of system (2) approaches asymptotically to the free top-predator equilibrium point \(E_2 = (\bar{x},\bar{y},\bar{z},0) \) in the interior of the positive quadrant of \(xyz - space \), for 0.71 \leq m < 1 the solution of system (2) approaches asymptotically to the free predators’ equilibrium point \(E_1 = (\bar{x},\bar{y},0,0) \) in the interior of the positive quadrant of \(xy - plane \), thus, the parameter \(m \) when \(m = 0.63 \), \(m = 0.69 \) and \(m = 0.71 \) is a bifurcation point as shown in Fig.(5.6), for typical value \(m = 0.68 \) and the bifurcation point \(m = 0.69 \). (more details see [6]).

Fig(5.6):- (a): Time series of the solution of system (2) for the data given by (5.1) with \(m = 0.68 \), which approaches asymptotically to a periodic dynamics in the interior of \(R^4_+ \). (b): Time series of the solution of system (2) for the data given by (5.1) with \(m = 0.69 \), which approaches to \(E_2 = (0.30,0.74,0.4,0) \) in the interior of the positive quadrant of \(xyz - space \).
DISCUSSION & CONCLUSION

In this paper, an ecological model that described the dynamical behavior of the food chain real system has been proposed and analyzed. The model included four nonlinear autonomous differential equations that describe the dynamics of four different population, namely first immature prey (x), mature prey (y), mid-predator (z) and (w) which is represent the top-predator. By the application of the Sotomayor’s theorem the necessary conditions for the local bifurcation around each equilibrium point and a Hopf bifurcation near the positive equilibrium point E_3 were established analytically which have been demonstrated the occurrence of:

- A transcritical bifurcation around E_0.
- Either a transcritical or a pitchfork bifurcation around E_1 and E_2.
- A saddle-node and a Hopf bifurcation round E_3.

Finally, numerical simulation has been used to specific the control set of parameters that affect dynamics of the system and confirm our obtained analytical results. Therefore system (2) has been solved numerically for different sets of initial points and a set of parameters starting with the hypothetical set of data given by eq. (5.1) and the following observations are obtained.

1- System (2) has two types of attractor in Int. R_4^+ either a stable point or a periodic attractor.

2- For the set hypothetical parameters value given in eq. (5.1), it is observed that varying the parameter values; $u_1, i = 1, 2, 4$ and 6 do not have any effect on the dynamical behavior of system (2) and the solution of the system (2) still approaches to positive equilibrium point $E_3 = (x^*, y^*, z^*, w^*)$.

3- As the natural death rate of immature prey u_3 increasing to 0.89 keeping the rest of parameters as in eq. (5.1), the solution of system (2) approaches to positive equilibrium point E_3. However if $0.90 < u_3 < 1$, then the top-predator will face extinction then the trajectory transferred from positive equilibrium point to the equilibrium point $E_2 = (x^*, y^*, z^*, 0)$, thus, the parameter $u_3 = 0.9$ is a bifurcation point.

4- As the natural death rate of mature prey u_5 increasing to 0.40 keeping the rest of parameters as in eq. (5.1), the solution of system (2) approaches to positive equilibrium point E_3, however if $0.41 < u_5 < 0.58$, then the top-predator will face extinction then the trajectory transferred from positive equilibrium point to the equilibrium point $E_3 = (x^*, y^*, z^*, 0)$, further increasing in the range $0.58 < u_5 < 0.8$ causes the mid-predator faced extinction in and then the trajectory transferred from the free top-predator's equilibrium point $E_2 = (x^*, y^*, z^*, 0)$ to the free predators equilibrium point $E_1 = (x^*, y^*, 0, 0)$, then more increasing of this parameter in the range $0.8 < u_5 < 1$ causes extinction in all species and then the trajectory transferred from equilibrium point $E_1 = (x^*, y^*, 0, 0)$ to the vanishing equilibrium point $E_0 = (0, 0, 0, 0)$, thus, the parameter u_5 when $u_5 = 0.41 \text{ and } u_5 = 0.58$ and $u_5 = 0.8$ is a bifurcation point.

5- As the parameter u_7 which represents the conversion rate from the mature prey to the mid-predator decreasing to 0.15 keeping the rest of parameters as in eq. (5.1), the solution of system (2) approaches to the positive free predators equilibrium point $E_1 = (x^*, y^*, 0, 0)$, while for the $u_7 = 0.15$, then the trajectory transferred from the free predators equilibrium point $E_1 = (x^*, y^*, 0, 0)$ to $E_2 = (x^*, y^*, z^*, 0)$, thus, the parameter u_7 when $u_7 = 0.15$ and $u_7 = 0.20$ is a bifurcation point.

6- As the natural death rate of the mid-predator u_8 increasing to 0.15 keeping the rest of parameters as in eq. (5.1), the solution of system (2) approaches to the positive equilibrium point E_3, further increasing in the range $0.16 \leq u_8 < 0.18$ causes the top-predator faced extinction and the trajectory transferred from the positive equilibrium point E_3 to the free top-predator equilibrium point $E_2 = (x^*, y^*, z^*, 0)$, but for $0.18 \leq u_8 < 1$ causes the mid-predator faced extinction and the trajectory transferred from $E_2 = (x^*, y^*, z^*, 0)$ to $E_1 = (x^*, y^*, 0, 0)$, thus, the parameter u_8 when $u_8 = 0.16$ and $u_8 = 0.18$ is a bifurcation point.

7- As the conversion rate of predation parameter of the top-predator upon the mid-predator u_9 increasing to 0.14 keeping the rest of parameters as in eq. (5.1), the solution of system (2) approaches the free top-predator equilibrium point $E_2 = (x^*, y^*, z^*, 0)$, while for $0.15 \leq u_9 < 1$ the top-predator population revives and then the trajectory transferred from the point $E_2 = (x^*, y^*, z^*, 0)$ to the positive equilibrium point E_3, thus, the parameter $u_9 = 0.15$ is a bifurcation point.

8- As the natural death rate of the top-predator parameter u_{10} increasing in the range $0.1 \leq u_{10} < 0.35$ keeping the rest of parameters as in eq. (5.1), the solution of system (2) approaches asymptotically to a positive equilibrium point E_3, while increasing this parameter in the range $0.35 \leq u_{10} < 1$ causes extinction of the top-predator population and then the trajectory transferred from positive equilibrium point to $E_2 = (x^*, y^*, z^*, 0)$, thus, the parameter $u_{10} = 0.35$ is a bifurcation point.

9- As the number of prey inside the refuge parameter m varying in the range $0.01 \leq m < 0.63$ and keeping the rest of parameters values as data given in eq. (5.1), the solution of system (2) approaches asymptotically to the positive equilibrium point E_3, while increasing this parameter in the range $0.63 \leq m < 0.69$ leads that the trajectory approaches asymptotically to a periodic dynamics in Int. R_4^+, while increasing this parameter for $0.69 \leq m < 0.71$ causes extinction of the top-predator population and restore the stability and then the trajectory transferred asymptotically from a periodic dynamics in Int. R_4^+ to the stable free top-
A food chain across a refuge stage-structure prey-predator model

predator equilibrium point $E_2 = (\hat{x}, \hat{y}, \hat{z}, 0)$, then more increasing of this parameter for $0.71 \leq m$ causes extinction of the mid-predator population and the trajectory transferred from $E_2 = (\hat{x}, \hat{y}, \hat{z}, 0)$ to $E_1 = (\bar{x}, \bar{y}, 0, 0)$, thus, the parameter m when $m = 0.63, m = 0.69$ and $m = 0.71$ is a bifurcation point.

REFERENCES