OCCURRENCE OF FILAMENTOUS FUNGI FROM TAP AND RIVER WATER IN BAGHDAD - IRAQ

1Ammar Y. Alkhakany, 2Jenan M. Khalaf, 1*Abdulkarim J. Karim

1Unit of Zoonotic Diseases, 2Department of Internal Medicine & Therapeutics, College of Veterinary Medicine / University of Baghdad, Baghdad – Iraq.

*Corresponding email: karimjafar59@yahoo.com

ABSTRACT

Occurrence of filamentous fungi in water resources spoils water and makes it inappropriate for human or animal consumption. This study was designed to investigate the presence of different fungi in water. One hundred water samples were collected from tap and river during the period of September 2016 – February 2017. Samples were filtered through 0.45 millipore filter membrane and cultivated on the Sabouraud dextrose agar. Wide ranges of filamentous fungi from water were isolated like Aspergillus spp. (55%) including A. fumigatus, A. niger, A. flavus, A. glaucomae, and A. terrus recorded 16%, 14%, 9%, 8.5% and 8% respectively, Ricopus spp (14%), Pencillium spp (14%), Geotrichum spp (7%), Alternaria spp (6.5%), Cladosporium spp (5%), Aurobasidium spp (5%), Fusarium spp (3.5 %), philahora spp (1.5%) and Finally Epicocum spp (1%). We conclude that the occurrence of contamination of river water with numerous fungus species is more than tap water which reflect either the ineffectiveness of chlorine treatment, fungal resistance or contamination via destruction in water pipe line.

KEYWORDS: tap, river, water, fungal, contamination.

INTRODUCTION

Life couldn’t be sustained, unless water is available, as well as safe drinking water is a basic human requirement (Alhassan & Kwakwa, 2014). The taste of water is confined to the way it’s treated and quality of its source. However, taste of water doesn’t always refer to safety (Mulamattathil et al., 2014). The WHO (2011) recorded safeness of water for human consumption according to its priority for human health during consumption. This can avoid a wide range of drinking-water related diseases and promote public health status (Nichols et al., 2009; Wingender & Flemming, 2011).

Fungi are Known to occur ubiquitously in the soil, air and water and act as a source of water contamination. Researchers have declared that the presence of fungi in drinking water involved tap water and water distribution system and deteriorated its taste and odor (Goncalves et al., 2006; Pereira et al., 2010). Broad fungi species have been isolated from drinking water. Different genera of fungi are opportunistic human pathogen, e.g. Alternaria spp, Rhizopus spp, Fusarium spp, Aspergillus spp and are indebted in many nosocomial infections (De Hoog, 2000). These are incriminated in hypersensitivity, pneumonia, phaeohyphomycosis, onychomycosis, keratitis, otitis, chronic hyper tropic sinusitis (De Hoog et al., 2003; Hageskal et al., 2009). Manikandan et al. (2011) reported that the Fusarium spp can cause several opportunistic mycosis such as subcutaneous invasive mycosis predominantly in immunocompromised patient. Rhinocerebral zygomycosis, caused by R. arrhizus and Rhizopus microspores, occurs in those with poorly controlled diabetes. Fungi have been regarded as one of significant organism worldwide. Its implication in water includes variety of diseases, of these, 90% of all fungus infections refer to allergies to fungal antigens, direct invasion of hosts and production of toxins resulted in poisoning of human and animals (McGinnis, 1996; Russell et al., 2005). Exposure to small amounts of potential toxin for several years may have negative effect on immune system. One of its excrete metabolites is gliotoxin, a toxic antimicrobial materials (Egbuta, 2015) which affects the ability of phagocytes and loss of their protective functions. Gliotoxin is a virulence factor of Aspergillus fumigatus and immune suppressive mycotoxin (Sugui et al., 2007). So, this study aim to detect the occurrence of fungus contamination in tap water and river water in Baghdad city in order to counteract their negative effect on human and animal health.

MATERIALS & METHODS

One hundred water samples were collected from tap and river water, 50 each, during six months, commenced from September 2016 till February 2017.

Collection of samples

Tap water samples, and similarly river water from Tigris, were collected in 250 ml sterile bottle with screw cup. Sodium thiosulphate 3% was added to tap water only. Before taking the samples, tap water was drained for 2 to 3 min to remove the accumulated dust and dirt. The procedure of water collection from Tigris River achieved from different locations at (0.5-1) meter depth and allowed to be filled slowly. All samples were tested immediately or within 8 hours after collecting and storing at 4°C.

Fungal isolation

From each sample, 100 ml of water was filtered through a sterial filter 0.45 µm Millipore membrane. These
Filamentous fungi from tap and river water in Baghdad

membranes were aseptically placed up on Sabouraud Dextrose Agar (SDA) with chloramphenicol prepared according to manufacturer's instruction.

Statistical Analysis
The Statistical Analysis System (SAS, 2012) program was applied to study the influence of difference factors. Chi-square test was utilized to compare significance between percentages in this study.

RESULTS
Out of 100 water samples examined for microbiological analysis, Table (1) showed high significant variation (P<0.01) of molds recovery at 46% and 82% from tap and river water, respectively. Diagnosis of these molds depends upon the characteristic features including frontal, reverse and staining with lacto phenol cotton blue as described by Mandell and Kauffman (2007). Opportunistic mixed contaminated pathogens including Aspergillus spp. were the most predominant isolated fungi. Aspergillus species included A. fumigatus (Fig. 1), A. flavus (Fig. 2), A. glaucuscomplex (Fig. 3), A. niger (Fig. 4), A. terrus (Fig. 5). In addition, Pencillum spp (Fig. 6), Aurobasidium spp (Fig. 7), Epicoccum spp (Fig 8), Rhizopus spp (Fig. 9), Alterneria spp (Fig. 10), Fusarium spp (Fig 11), Cladosporium spp (Fig. 12), Phialphora spp (Fig. 13) and Geotricum spp (Fig. 14) were also reported. Alterneria spp, Fusarium spp, Cladosporium spp and Phialphora spp hadnt been recovered from tap water, while the Epicoccum spp were not recovered from river water.

TABLE 1: The positive (%) water sample for mold from tap and river water

<table>
<thead>
<tr>
<th>Molds</th>
<th>Tap water (n=50)</th>
<th>River water (n=50)</th>
<th>Chi-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fumigatus</td>
<td>5 (10%)</td>
<td>10 (20%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td>A. niger</td>
<td>4 (8%)</td>
<td>12 (24%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td>A. flavus</td>
<td>4 (8%)</td>
<td>6 (12%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td>A. glaucus complex</td>
<td>4 (8%)</td>
<td>5 (10%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td>A. terrus</td>
<td>1 (2%)</td>
<td>8 (16%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td>Pencillum spp.</td>
<td>5 (10%)</td>
<td>11 (22%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td>Geotricum spp.</td>
<td>2 (4%)</td>
<td>4 (8%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td>Alternaria spp.</td>
<td>0</td>
<td>7 (14%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td>Fusarium spp.</td>
<td>0</td>
<td>3 (6%)</td>
<td>0.026 *</td>
</tr>
<tr>
<td>Aurobasidum spp.</td>
<td>4 (8%)</td>
<td>4 (8%)</td>
<td>0.039 *</td>
</tr>
<tr>
<td>Epicoccum spp.</td>
<td>2 (4%)</td>
<td>0</td>
<td>0.094 NS</td>
</tr>
<tr>
<td>Cladosporium spp.</td>
<td>0</td>
<td>7 (14%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td>Phialphora spp.</td>
<td>0</td>
<td>1 (2%)</td>
<td>0.061 NS</td>
</tr>
<tr>
<td>Rhizopus spp.</td>
<td>3 (6%)</td>
<td>13 (26%)</td>
<td>0.001 **</td>
</tr>
<tr>
<td></td>
<td>23 (46%)</td>
<td>41 (82%)</td>
<td>0.01 **</td>
</tr>
</tbody>
</table>

FIGURE 1: Macroscopical appearance of *Aspergillus fumigatus* on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).
FIGURE 2: Macroscopical appearance of *Aspergillus flavus* on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).

FIGURE 3: Macroscopical appearance of *Aspergillus glaucuscomplex* on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).

FIGURE 4: Macroscopical appearance of *Aspergillus niger* on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).
Filamentous fungi from tap and river water in Baghdad

FIGURE 5: Macroscopical appearance of *Aspergillus terreus* on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).

FIGURE 6: Macroscopical appearance of *Penicillium* spp on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).

FIGURE 7: Macroscopical appearance of *Aurobasidium* spp on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).
FIGURE 8: Macroscopical appearance of *Epicoccum spp* on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).

FIGURE 9: Macroscopical appearance of *Rhizopus spp* on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).

FIGURE 10: Macroscopical appearance of *Alternaria spp* on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).
FIGURE 11: Macroscopical appearance of *Fusarium* spp on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).

FIGURE 12: Macroscopical appearance of *Cladosporium* spp on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).

FIGURE 13: Macroscopical appearance of *Phialphora* spp on SDA at 25°C for 5-7 days. (A) frontal, (B) reverse, (C) stained with lactophenol cotton blue (60x), (D) zoom in (x1.4).
A. fumigatus. et al 2005. The high occurrence of A. fumigatus in tap (5%) and river water (10%) in present study (Table 1) was in consistent with findings of Anaissie et al. (2002) who recorded the presence of A. fumigatus in air of patient’s bathroom. They hypothesized that conidia didn’t die by temperature and showering aerosol contain fungal spores are inhaled by patient. Warris et al. (2001) isolated filamentous fungi from 94% of all the water samples taken from a paediatric bone marrow transplantation unit. Other researchers proved the occurrence of A. fumigatus as one of the more commonly isolated genera in water (Arvanitidou et al., 1999 and 2000) and could be isolated at 7.2% from surface water in water system installation (Hageskal et al., 2006). The Aspergillus spp isolated from both tap and river water in this study include A. fumigatus (15%), A. niger (16%), A. flavus (10%), A. glaucocomplex (9%), A. terrus (9%) and this result was in consistent with finding of Arvanitidou et al. (2000) in Greece and with Warris et al. (2001) in Norway who isolated A. fumigatus in 60 % and 75 % from tap and main pipe, respectively and A. niger and A. terrus 1 % for both. Fungal nosocomial infections are mostly attributed to Aspergillus. It is recorded in immune compromise patients (Richardson and Richardson, 2015). Out of 4.8 million adult people having asthma worldwide, 400,000 are estimated to have chronic pulmonary Aspergillosis (Denning et al., 2013). Warris et al. (2003) recognized that there are genotypic relatedness between clinical and water related isolation. Other Aspergillus species like A. terrus reported by the present study were in consistent with Warris et al. (2001) in Norway, Nazim et al. (2008) in Pakistan. In Virginia, Walsh (2003) recognized A. terrus as amphitrisen B resistant fungus that is incriminated in lethal infection. No study confined the isolation of Aspergillus glaucus complex in drinking water as our findings did. Its word wide distribution brings the possibility of its isolation from soils, house dust, plants and dried food as well. Although it is rare, Aspergillus glaucus complex has been implicated in ocular, cerebral, orofacial, cardiovascular and pulmonary infections.
particularly with immune compromised patients (Du et al., 2008). On the other hand, de Hoog et al. (2000) reported *Aspergillus niger* from tap (8%) and river water (24%) as doubled as our records (Table 1), whereas Warris et al. (2001) in Oslo recorded it at 1% in tap water. Spores of *A. niger* commonly occur as secondary invader following bacterial otitis (Xavier et al., 2008), pulmonary infection in immunocompromised patients (Turrand et al., 2003) and the production of oxalate crystals in clinical human specimens indicating that this genus act as common allergen and causes opportunistic invasive infection in hospitalized immunized patient (Oliveira et al., 2016).

Occurrence of *Penicillium* spp in tap water and river was 10% and 22% respectively (Table 1) lower than previous study (tap; 28.34%, river; 22.13%) conducted in Baghdad by Shaker and Sharif (2012). Our finding was similar with Sammon et al. (2010) in Australia who recorded (9.2%), and lower than that of Goncalves et al. (2006) in Norway and Oliveira et al. (2016) in Brazil who recorded contamination of tap water at 33% and 25%, respectively. Warris et al. (2001) recorded *Penicillium* spp in tap water and shower water at 17.7% and 5.6%, respectively. *Penicillium* spp produce patulin and geosmin (Paterson, 2004). Patulin is a mycotoxin with statutory levels, worldwide, considered as bacterial quorum sensing inhibitor (Rasmussen et al., 2005). Nevertheless, geosmin is associated with earthy smells associated with problem waters. *Penicillium* spp can survive in water, and it causes several diseases like allergy, asthma or other respiratory problem (Schwab & Straus, 2004). *Geotrichum* species occur worldwide and commonly isolated from soil, water, air, and sewage, as well as in plants, cereals, and dairy products. It is also found in normal human flora and is isolated from sputum and digestive tract in humans and other mammals (De Hoog and Smith 2004) and incriminated in many systemic and cutaneous infection (De Hoog et al., 2000). Our results (tap water 4% and in river water 8%) differ from Shaker and Sharif (2012) who recorded 0.46% in raw water and nil in tap water. An explanation might refer to the colony becomes yeast-like or slimy optimal growth temperature at 15°C and might be confused with yeasts (Kaur et al., 2008). Alternaria spp occurred in this study in river water only (14%), and wasn’t recovered in tap water, differed from Shaker and Fayadh (2012) in Baghdad whose records in raw water and tap water were 3.27% and 6.35%, respectively. Its occurrence in tap water was 1% in Norway (Warris et al., 2001) and 2.5% in Australia (Sammon et al., 2010). Cutaneous infections due to *Alternaria* species has been reported mainly from Mediterranean countries, particularly in injury farmers from France and Spain (Gene et al., 1995). *Fusarium* spp occurred in river water in current study almost similar to that observed by Shaker and Sharif (2012). Its presence in tap water agreed with Warris et al. (2001) where it was nil and disagreed with Shaker and Sharif (2012), Sammon et al. (2010), Nazim et al. (2008) and Göttlich et al. (2002) who recorded 0.82%, 14.3%, 3.33% and 0.14%, respectively. In USA, De Lucca and Walsh (2015) isolated *F. solani* frequently from water and incriminate to produce water soluble T-2 toxin. O’Donnell et al. (2010) reported that *F. oxysporum* and *F. solani* are responsible for 80% of human Fusarium infection. They are able to establish biofilm on contact lens causing eye infections and on polyvinyl chloride pipes suggesting water plumbing systems as the main environmental reservoir for this infection (Chang et al., 2006; Short et al., 2011).

Mark difference was observed in the recovery of *Rhizopus* spp from tap and raw water in this study, as it was higher than the findings of Shaker and Sharif (2012) who recorded 4.16% and 5.73% in raw water and tap water respectively. Warris et al. (2001) and Goncalves et al. (2006) recorded the occurrence of Rhizopus spp in tap water at 1% nd 2.94% respectively. Records of *Aurobasidium* spp in present study revealed lower occurrence compared with 32.40%, 37% and 18% recorded by Shaker and Sharif (2012), Oliveira et al. (2016) and Sammon et al. (2010) respectively. Niedoszytko et al. (2007) isolated this genus as airborne allergens, including grass, tree, cat and dog fur, associated to severity of asthma.

Ranges of other isolated fungi recorded by this study, e.g. Epicoccum spp, *Cladosporium* spp and Philaphora spp donot differ widely from the global records. The epicoccum spp isolated by Sammon et al. (2010) at 0.9% in main municipal water in australia, while *Epicoccum nigrum* was recorded by Aldred et al. (2005) in solid substrate fermentation system, and lastly, Suraiya & Azira, 2010 isolated this fungi from intramuscular abscess of an immunocompromised patients in Malaysia and the patients not response to Amphotricen-B. Spores of *Cladosporium* spp occur more abundantly worldwide than any other spore type and are the dominant airborne spores, especially in temperate climates and considered as a major source of fungal inhalant allergens (Bordo & Helbling, 2003). Shaker and Sharif (2012) isolated these fungi from river and tap water at 16.54% and 7.99% respectively. From tap water, Warris et al. (2001), Sammon et al. (2010), Oliveira et al. (2016) and Goncalves et al. (2006) isolated the fungi at 12.5%, 37.8%, 1.3% and 3.53%, respectively. Shaker and Sharif (2012) in Baghdad coincided our finding regarding the absence of Philaphora spp in tap water. However, some of Philaphora spp can tolerate 37°C, and have broad capacity to survive disinfection regimes (Philipps et al., 1999).

The present study reported significant increment in fungal contamination of river water than tap water. This may be attributed to pollution from air and surrounding environment. The high turbidity of river water due suspending soil and organic particles is positively related with fungal isolation in river water. This is in agreement with Shaker and Sharif (2012), Nagy and Olson (1982), Niemi et al. (1982) and Sammon et al. (2010). The significant occurrence of filamentous fungi in tap water, although treated with chlorine (Yamaguchi et al., 2007; Hageskal et al., 2009) because fungi can survive and persist after treatment, or enter through repairs, replacement of pipes, obstruction of water piping and the presence of odor and pigments in water (Siqueira et al., 2011; Hussain et al., 2010) which provided favorable condition for establishment of fungi and growth of biofilm inside the water. Few countries have standards for the presence of fungi in drinking water. Sweden is the only country that implies fungal analysis in drinking water.
since 1993. The limit for the occurrence of fungi in drinking water is 100 cfu per 100 ml sample (Hageskal et al., 2009). The Norwegian drinking water regulation does not include micro fungi (Anon, 2001). Kelley et al. (2003) isolated filaments fungi from surface water in UK and USA. Likely, no standards for fungi contamination in drinking water in Iraq. However, few guidelines as to what is considered as normal or acceptable levels of molds recovered from water. Several factors control the length of active time of chlorine and ozone in water such as temperature. Fungi that survived chlorine treatment in descending order include Aspergillus spp, pencillium spp and Cladosporium spp. In similar studies, Shaker and Sharif (2012), Kanzler et al. (2007), Hinzelin et al. (1985) isolated Alternaria spp and Fusarium spp in low frequency. Chlorination is the most economical method of disinfecting water and has been adopted by commercial growers in modern country (Gleick, 2003; Ibrahim et al., 2015). As shown by this study, the predominant fungi isolated from Tigris river water were Aspergillus spp., Rhizopus spp. and pincillium spp. These genera can tolerate extreme environmental stress, low water availability and high temperatures (90°C), and can be recovered under appropriate conditions (McGee et al., 2006), which could enhance their ability to survive under various environmental conditions in Tigris river. Shaker and Sharif (2012) in Iraq and Liu et al. (2015) from Songhua river catchment in China supported our findings. Moreover, fungal distribution in river water depends on geographical location and that physical barriers have significant contributions to the fungal distribution (van der Gast et al., 2011; Wu et al., 2013). Water surface is already contaminated with fungi from air and surrounding environment as reported by Wu et al. (2013) who argued that elements like total nitrogen, total phosphorus, nitrate and pH have different effects in fungal community and influence both fungal biomass and community structure. Hageskal et al., (2006) explained mold recovery by the content of organic material and chemical conditions in the water. Although no obvious variation was observed between global studies, variation of results may occur due to sample size, type of water analyses, research methods and cultivation and enumeration of fungi in water. Our conclusion indicates the occurrence of contamination of river water with numerous fungus species more than tap water which reflect either the ineffectiveness of chlorine treatment, fungal resistance or contamination via destruction in water pipe line.

ACKNOWLEDGEMENTS
We are grateful to Dr Nawal D Mahmoud in the lab of zoonotic diseases/Faculty of Veterinary Medicine-University of Baghdad for her cooperation.

REFERENCES

Filamentous fungi from tap and river water in Baghdad

Wu, B., Tian, J., Bai, C., Xiang, M., Sun, J. and Liu, X. (2013) The biogeography of fungal communities in wetland sediments along the Changjiang River and others sites in China. ISMEJ. 7,1299-1309. doi,10.1038/ismej.2013.29